Combination therapies utilize multiple mechanisms to target cancer cells to minimize cancer cell survival. Graphene provides an ideal platform for combination therapy due to its photothermal properties and high loading capacity for cancer-fighting molecules. Lipid functionalization of graphene extends its potential as a therapeutic platform by improving its biocompatibility and functionality. Previous studies involving graphene demonstrated its usage as a therapeutic vehicle; however, the effect of bare and engineered graphene structures on oxidative stress has not been comprehensively investigated. Because oxidative stress has been linked to cancer progression, it is vital to examine the generation of reactive oxygen species (ROS) in response to therapeutic platforms. This study functionalizes reduced graphene oxide (rGO) with lipids and the antioxidant enzyme human manganese superoxide dismutase (hMnSOD) and presents a detailed characterization of cellular responses to bare and functionalized rGO nanostructures in tumorigenic and nontumorigenic breast cell lines. Each cell type displayed distinct responses depending on whether they were normal, nonmetastatic, or metastatic cells. Bare rGO significantly reduced cell growth and substantially increased ROS production in all cell lines and instigated necrosis in metastatic breast cancer cells. Cell proliferation decreased in cancerous breast cells upon introduction of lipid-rGO, which correlated with peroxidation of lipids coating the rGO. In contrast, lipid-rGO nanostructures had minimal impact on proliferation and lipid peroxidation for normal breast cells. Lipid-rGO nanostructures with bound hMnSOD inhibited the proliferation of metastatic cancer cells while preventing necrosis and avoiding the negative side effects on normal cells associated with chemotherapeutic agents. Together, the results confirm the importance of functionalizing rGO for therapeutic applications and present an additional modality for the usage of graphene to selectively target cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b20070 | DOI Listing |
Photochem Photobiol Sci
January 2025
Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.
View Article and Find Full Text PDFBioDrugs
January 2025
Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.
View Article and Find Full Text PDFDig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFClin Exp Med
January 2025
Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.
View Article and Find Full Text PDFMol Divers
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!