Failure to rescue events, or events involving preventable deaths from complications, are a significant contributor to inpatient mortality. While many interventions have been designed and implemented over several decades, this patient safety issue remains at the forefront of concern for most hospitals. In the first part of this study, the development and implementation of one type of highly studied and widely adopted rescue intervention, algorithm-based patient assessment tools, is examined. The analysis summarizes how a lack of systems-oriented approaches in the design and implementation of these tools has resulted in suboptimal understanding of patient risk of mortality and complications and the early recognition of patient deterioration. The gaps identified impact several critical aspects of excellent patient care, including information-sharing across care settings, support for the development of shared mental models within care teams, and access to timely and accurate patient information. This chapter describes the use of several system-oriented design and implementation activities to establish design objectives, model clinical processes and workflows, and create an extensible information system model to maximize the benefits of patient state and risk assessment tools in the inpatient setting. A prototype based on the product of the design activities is discussed along with system-level considerations for implementation. This study also demonstrates the effectiveness and impact of applying systems design principles and practices to real-world clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1108/S1474-823120190000018012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!