The Effect of Ligand Mobility on the Cellular Interaction of Multivalent Nanoparticles.

Macromol Biosci

Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Universitaetsstrasse 31, 93053, Germany.

Published: April 2020

Multivalent nanoparticle binding to cells can be of picomolar avidity making such interactions almost as intense as those seen with antibodies. However, reducing nanoparticle design exclusively to avidity optimization by the choice of ligand and its surface density does not sufficiently account for controlling and understanding cell-particle interactions. Cell uptake, for example, is of paramount significance for a plethora of biomedical applications and does not exclusively depend on the intensity of multivalency. In this study, it is shown that the mobility of ligands tethered to particle surfaces has a substantial impact on particle fate upon binding. Nanoparticles carrying angiotensin-II tethered to highly mobile 5 kDa long poly(ethylene glycol) (PEG) chains separated by ligand-free 2 kDa short PEG chains show a superior accumulation in angiotensin-II receptor type 1 positive cells. In contrast, when ligand mobility is constrained by densely packing the nanoparticle surface with 5 kDa PEG chains only, cell uptake decreases by 50%. Remarkably, irrespective of ligand mobility and density both particle types have similar EC50 values in the 1-3 × 10 m range. These findings demonstrate that ligand mobility on the nanoparticle corona is an indispensable attribute to be considered in particle design to achieve optimal cell uptake via multivalent interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.201900427DOI Listing

Publication Analysis

Top Keywords

ligand mobility
16
cell uptake
12
peg chains
12
ligand
5
mobility cellular
4
cellular interaction
4
interaction multivalent
4
multivalent nanoparticles
4
nanoparticles multivalent
4
nanoparticle
4

Similar Publications

In this study, we employed a novel fluorescent probe, RO7304924-which selectively targets cannabinoid 2 receptor (CB2R)-to assess the lateral mobility of CB2R within the plasma membrane of Chinese hamster ovary cells stably expressing a functional, untagged receptor variant. Utilizing confocal fluorescence recovery after photobleaching (FRAP), we quantified the diffusion coefficient and mobile fraction of CB2R, thereby demonstrating the efficacy of RO7304924 as an innovative tool for elucidating the dynamics of this major endocannabinoid-binding G protein-coupled receptor. Our present findings highlight the potential of combining advanced ligand-based fluorescent probes with FRAP for future investigations into the biochemical details of CB2R mobility in living cells, and its impact on receptor-dependent cellular processes.

View Article and Find Full Text PDF

CTLA4-Ig reduces muscle fiber damage in a model of Duchenne muscular dystrophy by attenuating pro-inflammatory gene expression in myeloid lineage cells.

Am J Pathol

January 2025

Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606; Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095. Electronic address:

Duchenne muscular dystrophy (DMD) is a lethal, muscle-wasting, genetic disease that is greatly amplified by an immune response to the diseased muscles. The mdx mouse model of DMD was used to test whether the pathology can be reduced by treatments with a CTLA4-Ig fusion protein that blocks costimulatory signals required for activation of T-cells. CTLA4-Ig treatments reduced mdx sarcolemma lesions and reduced the numbers of activated T-cells, macrophages and antigen presenting cells in mdx muscle and reduced macrophage invasion into muscle fibers.

View Article and Find Full Text PDF

Atomically precise clusters such as [Pt(CO)(PPh)] ( = 1,2) (PPh is triphenylphosphine) are known as precursors for making oxidation catalysts. However, the changes occurring to the cluster upon thermal activation during the formation of the active catalyst are poorly understood. We have used a combination of hybrid mass spectrometry and surface science to map the thermal decomposition of [Pt(CO)(PPh)](NO).

View Article and Find Full Text PDF

Highly electroactive thiazolium [5,4-d]thiazol-2,5-dicarboxylic acid-silver electrochemiluminescent metal-organic frameworks: synthesis, properties and application in glutathione detection.

Mikrochim Acta

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi' an, 710069, PR, China.

Thiazolo[5,4-d]thiazole-2,5-dicarboxylic acid (HThz), a thiazolothiazole (TTz) derivative with carboxylic acid groups, was synthesized as a ligand for the creation of five MOFs, each associated with distinct metal ions including Ag, Mn, Co, Zn, and Cu. The cathodic electrochemiluminescence (ECL) of HThz and the resulting MOFs was investigated. HThz was found to generate ECL signals, but this process was heavily reliant on potassium persulfate (KSO) as a co-reactant.

View Article and Find Full Text PDF

-a facultative intracellular pathogen of macrophages-causes bronchopneumonia in foals and patients who are immunocompromised. Virulent strains of possess a virulence-associated plasmid, which encodes a 15- to 17-kDa surface protein called virulence-associated protein A (VapA). VapA expression is regulated by temperature and pH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!