Background: A key challenge for developing computer models of spray retention by plants is to accurately predict how spray drops behave when impacting leaf surfaces. One poorly understood outcome occurs when drops bounce or shatter on impact but leave behind a proportion of the liquid on the surface (designated as pinning). This process is studied via impaction experiments with two hard-to-wet leaf surfaces (fat-hen: Chenopodium album and barnyard grass: Echinochloa crus-galli L. P. Beauv) and one hydrophobic artificial surface (Teflon) using three liquid formulations.
Results: Drops that impact upon Teflon underwent pinning shatter events via a well-known mechanism referred to as receding breakup. Drops impacting on leaf surfaces did not undergo receding breakup because the liquid rim was not in direct contact with the leaf surface when it broke into secondary droplets. However, pinning did occur on plant surfaces via a different mechanism, especially when using formulations containing a surfactant.
Conclusion: Newly developed image analysis and methodology has allowed quantification of the volume fraction pinned to surfaces when drops shatter. The addition of surfactant can increase both the probability of pinning and the pinned volume when drops shatter on fat-hen or Teflon. However, the surfactants studied did not substantially improve the probability of pinning on barnyard grass. The difference in behaviour between the two leaf surfaces and the underlying mechanism is worth further study. © 2020 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.5796 | DOI Listing |
Plant Dis
January 2025
LSU AgCenter, Plant Pathology and Crop Physiology, Baton Rouge, Louisiana, United States.
In July 2023, panicle and leaf blight-like symptoms were observed from the rice () variety, PVL03, in research field plots in Louisiana (Rayne, LA 70578, USA; 30.21330⁰ N, 92.37309⁰ W).
View Article and Find Full Text PDFPlant Dis
January 2025
Henan Normal University, College of Life Sciences, Xinxiang, Xinxiang, Henan, China, 453007.
Echinacea purpurea (Eastern Purple Coneflower) is a perennial herbaceous plant belonging to the Asteraceae. It originated from North America and is cultivated all over the world. Extracts of E.
View Article and Find Full Text PDFPlant Dis
January 2025
Hainan University School of Tropical Agriculture and Forestry, Haikou, Hainan, China;
Katsumada galangal seed ( K. Schum) is an important member of the Zingiberaceae family, with both medicinal value and culinary applications (Park et al. 2020).
View Article and Find Full Text PDFPlant Dis
January 2025
Hebei Academy of Agricultural and Forestry Sciences, Plant Protection Institute, 437 Dongguan Street, Baoding, Hebei, China, 071000.
Strawberry () is an important economic crop in Hebei, China. In May 2023, root rot was observed in strawberry plantations (cultivar 'Benihoppe') in Shijiazhuang (37°57'23″N, 115°16'34″E), Hebei, China. The incidence of the disease reached up to 30% in the field.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Light metal-based nanomaterials are widely used for energy storage due to their high energy density and surface-to-volume ratio. However, their high reactivity is paradoxically both the source of advantageous properties and a hurdle to the fabrication of stable nanostructures. Here, we demonstrate the formation of nanoporous Mg via chemical redox agent-driven dealloying, which ensures minimized surface passivation and results in fine nanostructures with <50 nm of interconnected metallic ligament despite the labile chemical properties of Mg.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!