Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Pistachio (Pistacia vera L.) is an expensive culinary nut species; it is therefore susceptible to adulteration for economic profit. Green pea (Pisum sativum L.) kernels constitute the most common material used for adulterating chopped / ground pistachio nuts and pistachio paste. Food genomics enables the species composition of a food sample to be ascertained through DNA analysis. Accordingly, a barcode DNA genotyping approach was used to standardize a test method to identify green pea adulteration in pistachio nuts.
Results: The trnL (UAA)-trnF (GAA) intergenic spacer in the plastid genome was the target analyte in the present study. The barcode locus displayed a significant, discriminatory size difference between pistachio and pea, with amplicon sizes of 449 and 179 bp, respectively. Polymerase chain reaction-capillary electrophoresis (PCR-CE) analysis of the intergenic spacer resulted in the successful identification of species composition in the in-house admixtures, which contained 5% to 30% of green pea.
Conclusion: The present work describes a fast and straightforward DNA test that identifies green pea adulteration in pistachio nuts without requiring a statistical data interpretation process. The plastid trnL (UAA)-trnF (GAA) intergenic spacer length widely varies among plant taxa, so the PCR-CE protocol that operates on the intergenic spacer holds the potential to reveal adulteration with a plethora of adulterants. The PCR-CE assay described in the present work can be adopted readily by food-quality laboratories in the public sector or the food industry as an easy and reliable method to analyze pistachio authenticity. © 2020 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.10336 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!