A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional characterization of the idtF and idtP genes in the Claviceps paspali indole diterpene biosynthetic gene cluster. | LitMetric

Functional characterization of the idtF and idtP genes in the Claviceps paspali indole diterpene biosynthetic gene cluster.

Folia Microbiol (Praha)

Southwest Center for Natural Products Research, School of Natural Resources and the Environment, University of Arizona, Tucson, USA.

Published: June 2020

Claviceps paspali is used in the pharmaceutical industry for the production of ergot alkaloids. This fungus also biosynthesizes paspalitrems, indole diterpene (IDT) mycotoxins that cause significant economic losses in agriculture and represent safety concerns for ergot alkaloid manufacture. Here, we use Agrobacterium-mediated transformation to replace the idtP and the idtF genes in the IDT biosynthetic gene cluster of C. paspali with a selectable marker gene. We show that the ΔidtP knockout mutant produces paspaline, the first IDT intermediate of the pathway. The ΔidtF strain produces unprenylated IDTs such as paspalinine and paspaline. These experiments validate the function of idtP as the gene encoding the cytochrome P450 monooxygenase that oxidizes and demethylates paspaline to produce 13-desoxypaxilline, and that of idtF as the gene that encodes the α-prenyltransferase that prenylates paspalinine at the C20 or the C21 positions to yield paspalitrems A and C, respectively. In addition, we also show that axenic cultures of the wild type, the ΔidtP and the ΔidtF mutant C. paspali strains fail to produce an assembly of IDTs that are present in C. paspali-Paspalum spp. associations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244603PMC
http://dx.doi.org/10.1007/s12223-020-00777-6DOI Listing

Publication Analysis

Top Keywords

claviceps paspali
8
indole diterpene
8
biosynthetic gene
8
gene cluster
8
gene
5
functional characterization
4
characterization idtf
4
idtf idtp
4
idtp genes
4
genes claviceps
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!