This research investigated physical (temperature, salinity, and density) and chemical (dissolved oxygen, ammonium, nitrate, nitrite, phosphate, and silicate) properties of offshore seawater in the Red Sea northern Gulf of Aqaba; Jordanian Site were measured during 2013-2015 to assess the temporal and seasonal variation of the upper 400 m of the water column. The study also investigated seasonal variations, assessing the relationships of temperature with physical and chemical parameters. The average value of temperature for all data was 23.03 ± 1.58 °C. Temperature followed an expected seasonal cycle during 2013-2015, with well-mixed conditions in the upper 400 m of the water column during spring (Feb-Apr) and stratification during summer (Jul-Aug). There were no significant differences among years for temperature, but highly significant differences among months and depths. The average value of salinity (psu) for all data was 40.60 ± 0.10 with significant positive or negative differences among years, months, and depths. In general, dissolved oxygen, ammonium, nitrate, nitrite, and phosphate data showed positive or negative significant differences among months and depths with no significant annual variations. Silicate only showed significant differences among depths. Correlation tests between temperature and other parameters in the upper 25 m of the water column revealed significant inverse-relationships between temperature and all other parameters (other than salinity) that were attributed to the dominant thermal controls on seawater density, to the thermodynamic controls on oxygen solubility and to seasonal increases in light irradiance that allowed nutrient consumption by primary producers. In the intermediate water column (100-150 m), similar correlations were found as in the 0-25 m data, except for silicate. In the deeper waters (300-400 m), only salinity, density, and phosphate showed significant correlations with temperature, and indicated that the seasonal effects of primary production at depth were minimal. In general, the values of all parameters during the years 2013-2015 in the upper 400 m were comparable with previous studies (e.g., 1998-2003). In conclusion, this research manifested the strong correlation of temperature with some chemical parameters and presumed seasonal controls on primary production. Given the general lack of interannual variation, water quality in the northern Gulf of Aqaba appears relatively stable.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-020-8134-4DOI Listing

Publication Analysis

Top Keywords

water column
20
400 m water
12
northern gulf
12
gulf aqaba
12
upper 400 m
12
months depths
12
temperature
9
physical chemical
8
red sea
8
salinity density
8

Similar Publications

Objective: This study aimed to qualitatively study the main chemical components of apple peel in APORT, Kazakhstan, by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and to compare the components of apple peels with different provenances.

Methods: An ACQUITY UPLC HSS T3 (100 mm × 2.1 mm, 1.

View Article and Find Full Text PDF

Pelagic shark intestine as a potential temporary sink for plastic and non-plastic particles.

Mar Environ Res

January 2025

College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China.

Highly migratory pelagic sharks have the potential to serve as carriers of particle contamination in a vast three-dimensional space. We investigate the occurrence, abundance and characteristics of plastic and non-plastic particles in the scroll intestine of the blue shark (Prionace glauca), one of the most abundant pelagic shark species worldwide. We detected both plastic and non-plastic particles in all sections of the intestine, with the posterior region exhibiting the highest concentration.

View Article and Find Full Text PDF

Immobilization of per- and polyfluorinated alkyl substances (PFAS) from field contaminated groundwater by a novel organo-clay vs. colloidal activated carbon under flow conditions.

J Hazard Mater

January 2025

University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, Wuppertal 42285, Germany. Electronic address:

Two novel and unique adsorptive materials, one (Fluorolock®) from clay mineral sepiolite coated with the cationic polymer polydiallyldimethylammionium chloride (pDADMAC) and the other (Intraplex®) from colloidal activated carbon were specially developed for the in situ remediation of per- and polyfluoroalkyl substances (PFAS) in the saturated zone. We evaluated the potential of both materials to immobilize PFAS in soils under flow conditions via soil column experiments using groundwater, which was contaminated with PFAS in the field. Furthermore, the potential ecotoxicological effects of both materials on aquatic organisms were assessed by exposing the soil column effluent to Daphnia magna.

View Article and Find Full Text PDF

A simple, fast, sample-saving, and sensitive liquid chromatography-tandem mass spectrometry method was established with a linear range adjusted by in-source collision-induced dissociation. Notably, this could simultaneously determine busulfan, fludarabine, phenytoin, and posaconazole in plasma from children, each having unique physical and chemical properties. The procedure necessitated only 20 μL of plasma and involved a simple protein precipitation process.

View Article and Find Full Text PDF

Development and validation of a sensitive LC-MS/MS assay for determination of upadacitinib in human plasma and its application in patients with inflammatory bowel disease.

J Pharmacol Toxicol Methods

January 2025

Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. Electronic address:

Background: Upadacitinib is a selective Janus kinase (JAK) 1 inhibitor approved by the Food and Drug Administration for the treatment of moderate-to-severe inflammatory bowel disease (IBD). We aimed to establish and validate a method for determining Upadacitinib in patients with IBD by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method.

Methods: The mobile phase was 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!