A series of Ru(II)-containing metallopolymers with different polypyridyl complexes, namely [Ru(N^N)(L)](PF) (L = bipyridine-branched polymer; N^N = bpy: 2,2'-bipyridine (Ru 1); phen: 1,10-phenanthroline (Ru 2); dpp: 4,7-diphenyl-1,10-phenanthroline (Ru 3)), were synthesized with the motive that adjusting π-conjugation length of ligands might produce competent luminescent oxygen probes. The three hydrophobic metallopolymers were studied with H NMR, UV-Vis absorption, and emission spectroscopy, and then were utilized to prepare biocompatible nanoparticles (NPs) via a nanoprecipitation method. Luminescent properties of the NPs were investigated against dissolved oxygen by steady-state and time-resolved spectroscopy respectively. Luminescence quenching of the three NPs all followed a linear behavior in the range of 0-43 ppm (oxygen concentration), but Ru 3-NPs exhibited the highest oxygen sensitivity (82%) and longest emission wavelength (λ = 460 nm; λ = 617 nm). In addition, external interferons from cellular environments (e.g., pH, temperature, and proteins) had been studied on Ru 3-NPs. Finally, dissolved oxygen in monolayer cells under normoxic/hypoxic conditions was clearly differentiated by using Ru 3-NPs as the luminescent sensor, and, more importantly, hypoxia within multicellular tumor spheroids was vividly imaged. These results suggest that such Ru(II)-containing metallopolymers are strong candidates for luminescent nanosensors towards hypoxia. Graphical abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-020-02484-0 | DOI Listing |
Commun Chem
January 2025
National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia.
Iminophosphoranes with the general formula (RP═NR') have great potential in synthetic chemistry as valuable precursors/intermediates in organic synthesis or as building blocks for various organic compounds. However, the synthetic approaches and conditions to prepare iminophosphoranes are still poorly understood, limiting the utility of this chemistry for organic materials. In this article, a simple and efficient synthesis of previously unattainable poly(arylene iminophosphoranes) is reported.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, PIEAS, P. O. Nilore, 45650 Islamabad, Pakistan.
The growing interest in plant-derived compounds and synthesis of metallopolymer nanocomposites (MPNCs) especially silver chitosan nanocomposites (AgCS-NCs) emerges as a useful platform to encapsulate and deliver plant-based anticancer drugs. This work presents the synthesis of AgCS-NCs by using Moringa oleifera aqueous leaf extract (MOAE) and the effect of concentration of MOAE on physicochemical properties of AgCS-NCs followed by its anticancer effect on MCF-7 cell line. The results of UV-visible spectroscopy (UV-Vis) and Scanning electron microscopy (SEM) showed successful formation of AgCS-NCs.
View Article and Find Full Text PDFChemistry
December 2024
Inorganic Chemistry, Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University, Campus Saarbrücken, 66123, Saarbrücken, Germany.
The synthesis of differently substituted polyferrocenylmethylenes (PFM) via ring-opening transmetalation polymerization (ROTP) is reported. A number of novel, symmetrically and asymmetrically substituted carba[1]magnesocenophanes have been prepared, which were used as precursors and allowed investigations of the influence of different substitution patterns on the PFM polymer properties. The novel carba[1]magnesocenophanes have been fully characterized by H and C{H} NMR spectroscopy, and structurally authenticated by single-crystal X-ray diffraction (SC-XRD).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC 27707, USA.
π-conjugated polymers are arguably one of the most exciting classes of materials and have attracted substantial attention due to their unique optical and electronic properties. The introduction of transition metals into conjugated polymers tunes the optoelectronic properties of these metallopolymers, which may improve their performance in device applications. Graphene and reduced graphene oxide (RGO) derivatives are interesting materials with a unique structure and outstanding properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering., Nanjing University, Nanjing, 210023, P. R. China.
The practical application of polymer electrolytes is seriously hindered by the inferior Li ionic conductivity, low Li transference number (t), and poor interfacial stability. Herein, a structurally novel metallopolymer is designed and synthesized by exploiting a molybdenum (Mo) paddle-wheel complex as a tetratopic linker to bridge organic and inorganic moieties at molecular level. The prepared metallopolymer possesses combined merits of outstanding mechanical and thermal stability, as well as a low glass transition temperature (T <-50 °C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!