With growing interest in alternative fuels to minimize carbon and particle emissions, research continues on the production of lignocellulosic ethanol and on the development of suitable yeast strains. However, great diversities and continued technical advances in pretreatment methods for lignocellulosic biomass complicate the evaluation of developed yeast strains, and strain development often lags industrial applicability. In this review, recent studies demonstrating developed yeast strains with lignocellulosic biomass hydrolysates are compared. For the pretreatment methods, we highlight hydrothermal pretreatments (dilute acid treatment and autohydrolysis), which are the most commonly used and effective methods for lignocellulosic biomass pretreatment. Rather than pretreatment conditions, the type of biomass most strongly influences the composition of the hydrolysates. Metabolic engineering strategies for yeast strain development, the choice of xylose-metabolic pathway, adaptive evolution, and strain background are highlighted as important factors affecting ethanol yield and productivity from lignocellulosic biomass hydrolysates. A comparison of the parameters from recent studies demonstrating lignocellulosic ethanol production provides useful information for future strain development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-020-10427-z | DOI Listing |
Nat Commun
January 2025
School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.
Solar-driven, selective biomass hydrogenation is recognized as a promising route to renewable chemicals production, but remains challenging. Here, we report a TiO supported Cu single-atom catalyst with a four-coordinated Cu-O structure, which can be universally applied for solar-driven production of various renewable chemicals from lignocellulosic biomass-derived platform molecules with good yields using green methanol as a hydrogen donor, to address this challenge. It is significant that the biomass upgrading driven by natural sunlight on a gram scale demonstrates the great practical potential.
View Article and Find Full Text PDFCattail (), a wetland plant, is emerging as a sustainable materials resource. While most of the species are proven to be a fiber-yielding crop, exhibits the broadest leaf size (5-30 mm), yields highest amount of fiber (≈190.9 g), and captures maximum CO (≈1270 g).
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, S117585, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), S138602, Singapore. Electronic address:
Pseudomonas putida degraded 35 % of compounds in alkali-pretreated lignin liquor under nitrogen-replete conditions but with low polyhydroxyalkanoates (PHA) production, while limiting nitrogen supplement improved PHA content (PHA/dry cell weight) to 43 % at the expense of decreased lignin degradation of 22 %. Increase of initial cell biomass (0.1-1.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
January 2025
Department of Animal Science, Wageningen University & Research, Wageningen, The Netherlands.
White rot fungi can degrade lignin and improve the nutritional value of highly lignified biomass for ruminants. We screened for excellent fungi-biomass combinations by investigating the improvement of digestibility of wheat straw, barley straw, oat straw, rapeseed straw, miscanthus, new reed, spent reed from thatched roofs, and cocoa shells after colonisation by Ceriporiopsis subvermispora (CS), Lentinula edodes (LE), and Pleurotus eryngii (PE) (indicated by increased in vitro gas production [IVGP]). First, growth was evaluated for three fungi on all types of biomass, over a period of 17 days in race tubes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Beijing Key Laboratory of Lignocellulosic Chemistry, and Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!