Genomic tools are lacking for invasive and native populations of sea lamprey (). Our objective was to discover single nucleotide polymorphism (SNP) loci to conduct pedigree analyses to quantify reproductive contributions of adult sea lampreys and dispersion of sibling larval sea lampreys of different ages in Great Lakes tributaries. Additional applications of data were explored using additional geographically expansive samples. We used restriction site-associated DNA sequencing (RAD-Seq) to discover genetic variation in Duffins Creek (DC), Ontario, Canada, and the St. Clair River (SCR), Michigan, USA. We subsequently developed RAD capture baits to genotype 3,446 RAD loci that contained 11,970 SNPs. Based on RAD capture assays, estimates of variance in SNP allele frequency among five Great Lakes tributary populations (mean 0.008; range 0.00-0.018) were concordant with previous microsatellite-based studies; however, outlier loci were identified that contributed substantially to spatial population genetic structure. At finer scales within streams, simulations indicated that accuracy in genetic pedigree reconstruction was high when 200 or 500 independent loci were used, even in situations of high spawner abundance (e.g., 1,000 adults). Based on empirical collections of larval sea lamprey genotypes, we found that age-1 and age-2 families of full and half-siblings were widely but nonrandomly distributed within stream reaches sampled. Using the genomic scale set of SNP loci developed in this study, biologists can rapidly genotype sea lamprey in non-native and native ranges to investigate questions pertaining to population structuring and reproductive ecology at previously unattainable scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029094PMC
http://dx.doi.org/10.1002/ece3.6001DOI Listing

Publication Analysis

Top Keywords

sea lamprey
16
rad capture
12
reproductive ecology
8
snp loci
8
sea lampreys
8
larval sea
8
great lakes
8
sea
6
loci
5
rapture rad
4

Similar Publications

Integrated Pest Management (IPM) provides a powerful framework for addressing threats to human well-being caused by nuisance species including invasives. We examined the hypothesis that adaptive management could erode barriers to IPM implementation by developing a decision-analytic adaptive management framework for invasive sea lamprey (Petromyzon marinus) IPM in the Laurentian Great Lakes of North America. The framework addressed objectives associated with coordinating multiple sea lamprey control actions at the regional scale and objectives associated with internal validity of control actions.

View Article and Find Full Text PDF

Variable lymphocyte receptors (VLRs) are antigen receptors derived from the adaptive immune system of jawless vertebrates such as lamprey (Petromyzon marinus). First discovered in 2004, VLRs have been the subject of numerous biochemical and structural investigations. Due to their unique antigen binding properties, VLRs have been leveraged as possible drug delivery agents.

View Article and Find Full Text PDF

Introduction: CD38 is an ectoenzyme receptor found on hematopoietic cells and its expression is used in the flow cytometric analysis of sub-populations of circulating B cells among peripheral blood mononuclear cells (PBMC) to aid in diagnosing patients with different antibody production defects (AbD). Monoclonal antibodies derived from the sea lamprey Variable Lymphocyte Receptor B (VLRB) are emerging as an alternative to conventional mammalian antibodies. We hypothesized that VLRB MM3 (V-CD38) which specifically recognizes CD38 in a manner correlating with its enzymatic activity could identify terminally differentiated B cells in human PBMC.

View Article and Find Full Text PDF

Although olfaction is well known to guide animal behavior, the neural circuits underlying the motor responses elicited by olfactory inputs are poorly understood. In the sea lamprey, anatomical evidence shows that olfactory inputs project to the posterior tuberculum (PT), a structure containing dopaminergic (DA) neurons homologous to the mammalian ventral tegmental area and the substantia nigra pars compacta. Olfactory inputs travel directly from the medial olfactory bulb (medOB) or indirectly through the main olfactory bulb and the lateral pallium (LPal).

View Article and Find Full Text PDF

Discovery of an unconventional lamprey lymphocyte lineage highlights divergent features in vertebrate adaptive immune system evolution.

Nat Commun

September 2024

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China.

Article Synopsis
  • Lymphocyte receptors have evolved independently in both jawed and jawless vertebrates, showing similar adaptive immune responses, though the diversity in jawless vertebrates like lampreys is less understood.
  • Researchers used single-cell RNA sequencing on lamprey tissues, revealing that T-like cells show more variety than B-like cells, with a unique T-like cell type identified that has a receptor homologous to MPL.
  • These MPL-L+ T-like cells are present in various lamprey tissues and can proliferate in response to specific stimuli, offering new insights into the adaptive immune system of jawless vertebrates and its evolutionary background.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!