Selection of appropriate genetic markers to quantify phylogenetic diversity is crucial for community ecology studies. Yet, systematic evaluation of marker genes for this purpose is scarcely done. Recently, the combined effort of phycologists has produced a rich plastid genome resource with taxonomic representation spanning all of the major lineages of the red algae (Rhodophyta). In this proof-of-concept study, we leveraged this resource by developing and applying a phylogenomic strategy to seek candidate plastid markers suitable for phylogenetic community analysis. We ranked the core genes of 107 published plastid genomes based on various sequence-derived properties and their tree distance to plastid genome phylogenies. The resulting ranking revealed that the most widely used marker, L, is not necessarily the optimal marker, while other promising markers might have been overlooked. We designed and tested PCR primers for several candidate marker genes, and successfully amplified one of them, , in a taxonomically broad set of red algal specimens. We suggest that our general marker identification methodology and the primers will be useful to the phycological community for investigating the biodiversity and community ecology of the red algae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029088PMC
http://dx.doi.org/10.1002/ece3.5984DOI Listing

Publication Analysis

Top Keywords

red algae
12
community ecology
12
plastid markers
8
phylogenetic community
8
marker genes
8
plastid genome
8
community
5
marker
5
reappraising plastid
4
markers
4

Similar Publications

Spectroscopic technology is an effective method for estimating rice chlorophyll content. However, redundant spectral information and the complex background of rice in situ challenge the accuracy and robustness of the estimation. To address this problem, this study proposed a band selection method combining spectral color characteristics and established a convolutional neural network (CNN) model based on this method to estimate chlorophyll content of rice for black (background-free), clear, muddy, and green algae-covered backgrounds.

View Article and Find Full Text PDF

Preparation of agar polysaccharides and biological activities and relationships of agar-derived oligosaccharides and monosaccharides: A review.

Int J Biol Macromol

January 2025

The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China. Electronic address:

Agar is one of the three major colloidal linear polysaccharides obtained from marine seaweeds, specifically red macroalgae (Rhodophyta). It has garnered significant attention owing to its diverse industrial applications, potential for bioethanol production, and the physiological activities of its derived saccharides. This review delves into the preparation and degradation processes of agar, focusing on both physical and chemical pretreatments, as well as subsequent hydrolysis through acid and enzymatic methods.

View Article and Find Full Text PDF

Methane emissions from ruminant digestion contribute significantly to global anthropogenic greenhouse gas emissions. Members of the phylum Rhodophyta (red algae), particularly Asparagopsis sp., have shown promising results in reducing methane emissions in ruminants, due to their high content of halogenated methane analog compounds.

View Article and Find Full Text PDF

Pure phycocyanin (PC) hexamers from red algae were first prepared in this research. PC hexamers are helpful for studying the role and mechanism of PCs in energy transfer within phycobilisomes from red algae. The PC hexamers from Polysiphonia urceolata are stable at lower pH (pH 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!