Measures of brain activity through functional magnetic resonance imaging (fMRI) or electroencephalography (EEG), two complementary modalities, are ground solutions in the context of neurofeedback (NF) mechanisms for brain rehabilitation protocols. While NF-EEG (in which real-time neurofeedback scores are computed from EEG signals) has been explored for a very long time, NF-fMRI (in which real-time neurofeedback scores are computed from fMRI signals) appeared more recently and provides more robust results and more specific brain training. Using fMRI and EEG simultaneously for bi-modal neurofeedback sessions (NF-EEG-fMRI, in which real-time neurofeedback scores are computed from fMRI and EEG) is very promising for the design of brain rehabilitation protocols. However, fMRI is cumbersome and more exhausting for patients. The original contribution of this paper concerns the prediction of bi-modal NF scores from EEG recordings only, using a training phase where EEG signals as well as the NF-EEG and NF-fMRI scores are available. We propose a sparse regression model able to exploit EEG only to predict NF-fMRI or NF-EEG-fMRI in motor imagery tasks. We compared different NF-predictors stemming from the proposed model. We showed that predicting NF-fMRI scores from EEG signals adds information to NF-EEG scores and significantly improves the correlation with bi-modal NF sessions compared to classical NF-EEG scores.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006471 | PMC |
http://dx.doi.org/10.3389/fnins.2019.01451 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!