Anti-vascular endothelial growth factor (VEGF) therapy shows antitumor activity against various types of solid cancers. Several resistance mechanisms against anti-VEGF therapy have been elucidated; however, little is known about the mechanisms by which the acquired resistance arises. Here, we developed new anti-VEGF therapy-resistant models driven by chronic expression of the mouse VEGFR2 extracellular domain fused with the human IgG4 fragment crystallizable (Fc) region (VEGFR2-Fc). In the VEGFR2-Fc-expressing resistant tumors, we demonstrated that the FGFR2 signaling pathway was activated, and pericytes expressing high levels of FGF2 were co-localized with endothelial cells. Lenvatinib, a multiple tyrosine kinase inhibitor including VEGFR and FGFR inhibition, showed marked antitumor activity against VEGFR2-Fc-expressing resistant tumors accompanied with a decrease in the area of tumor vessels and suppression of phospho-FGFR2 in tumors. Our findings reveal the key role that intercellular FGF2 signaling between pericytes and endothelial cells plays in maintaining the tumor vasculature in anti-VEGF therapy-resistant tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031295 | PMC |
http://dx.doi.org/10.1038/s41598-020-59853-z | DOI Listing |
ACS Chem Biol
December 2024
Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States.
Fibroblast growth factor 2 (FGF2) is a multipotent growth factor and signaling protein that exhibits broad functions across multiple cell types. These functions are often initiated by binding to growth factor receptors and fine-tuned by glycosaminoglycan (GAG)-modified proteins called proteoglycans. The various outputs of FGF2 signaling and functions arise from a dynamic and cell type-specific set of binding partners.
View Article and Find Full Text PDFInt Arch Allergy Immunol
December 2024
Objective: Epithelial-mesenchymal transition (EMT) of alveolar epithelial cells is an important mechanism for the onset and development of broncho-pulmonary dysplasia (BPD).The role of FGF-2 in BPD is currently unclear. The aim of our study is to investigate the expression of FGF-2 in lung tissue of BPD mice, to further clarify the effect of FGF-2 on EMT in alveolar epithelial cells and to actively search for possible signaling pathways.
View Article and Find Full Text PDFDiscov Oncol
December 2024
Department of Oncology, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou, China.
Long non-coding RNAs (LncRNAs) are crucial regulators of gene expression and cellular processes, with significant implications for cancer research. This review focuses on the role of LncRNA CARMN (Cardiac Arrest and Regulated Myocyte Nuclear Protein) in various cancers. CARMN, originally identified for its function in cardiac tissues, has shown dysregulated expression in several tumor types, including cervical, breast, colorectal, and esophageal cancers.
View Article and Find Full Text PDFSmall
December 2024
Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Immunomodulation is essential for implants to regulate tissue regeneration, while bioelectricity plays a fundamental role in regulating immune activities. Under natural preferences, the bone matrix electrical microenvironment is heterogeneous in the nanoscale, which provides fundamental electrical cues to regulate bone immunity and regenerative repair. However, remodeling bone nanoscale heterogeneous electrical microenvironment remains a challenge, and the underlying immune modulation mechanism remains to be explored.
View Article and Find Full Text PDFCells
November 2024
Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria.
The Sprouty (SPRY) proteins are evolutionary conserved modulators of receptor tyrosine kinase (RTK) signaling. SPRY2 inhibits fibroblast growth factor (FGF) signaling, whereas it enhances epidermal growth factor (EGF) signaling through inhibition of EGF receptor (EGFR) endocytosis, ubiquitination, and degradation. In this study, we analyzed the effects of SPRY2 on endocytosis and degradation of FGF receptor 1 (FGFR1) using two human glioblastoma (GBM) cell lines with different endogenous SPRY2 levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!