Hypoxic damage to the developing brain due to preterm birth causes many anatomical changes, including damage to the periventricular white matter. This results in the loss of glial cells, significant disruptions in myelination, and thereby cognitive and behavioral disabilities seen throughout life. Encouragingly, these neurological morbidities can be improved by environmental factors; however, the underlying cellular mechanisms remain unknown. We found that early and continuous environmental enrichment selectively enhances endogenous repair of the developing white matter by promoting oligodendroglial maturation, myelination, and functional recovery after perinatal brain injury. These effects require increased exposure to socialization, physical activity, and cognitive enhancement of surroundings-a complete enriched environment. Using RNA-sequencing, we identified oligodendroglial-specific responses to hypoxic brain injury, and uncovered molecular mechanisms involved in enrichment-induced recovery. Together, these results indicate that myelin plasticity induced by modulation of the neonatal environment can be targeted as a therapeutic strategy for preterm birth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031237 | PMC |
http://dx.doi.org/10.1038/s41467-020-14762-7 | DOI Listing |
JAMA Pediatr
January 2025
Department of Psychology, University of Exeter, United Kingdom.
JAMA Pediatr
January 2025
Swedish Institute for Social Research, Stockholm University, Stockholm, Sweden.
Ann Biomed Eng
January 2025
Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK.
Purpose: Head acceleration events (HAEs) are a growing concern in contact sports, prompting two rugby governing bodies to mandate instrumented mouthguards (iMGs). This has resulted in an influx of data imposing financial and time constraints. This study presents two computational methods that leverage a dataset of video-coded match events: cross-correlation synchronisation aligns iMG data to a video recording, by providing playback timestamps for each HAE, enabling analysts to locate them in video footage; and post-synchronisation event matching identifies the coded match event (e.
View Article and Find Full Text PDFIr J Med Sci
January 2025
Emergency Department, University of Health Science, Kanuni Sultan Süleyman Research and Training Hospital, Istanbul, Turkey.
Background: Traumatic brain injury (TBI) in children, including concussion, is one of the major causes of emergency department (ED) registration and a significant burden on the health system.
Objectives: The primary goal of this study was to evaluate the outcomes of a telemedicine strategy for remotely monitoring the children with traumatic brain concussions, focusing on their neurological symptoms and signs. The secondary goal was to explore socioeconomic and educational differences among the participating families.
Int J Legal Med
January 2025
Department of Forensic Medicine, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland.
In forensic neuropathology, the β-amyloid precursor protein (β-APP) immunostain is used to diagnose axonal injury (AI). The two most common aetiologies are traumatic (TAI) and ischaemic (vascular; VAI). We aimed to identify background characteristics and neuropathology findings that are suggestive of TAI, VAI, or no AI in neuropathologically examined medico-legal autopsy cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!