Cells have developed protein quality-control strategies to manage the accumulation of misfolded substrates during heat stress. Using a soluble reporter of misfolding in fission yeast, Rho1.C17R-GFP, we demonstrate that upon mild heat shock, the reporter collapses in protein aggregate centers (PACs). They contain and/or require several chaperones, such as Hsp104, Hsp16, and the Hsp40/70 couple Mas5/Ssa2. Stress granules do not assemble at mild temperatures and, therefore, are not required for PAC formation; on the contrary, PACs may serve as nucleation centers for the assembly of stress granules. In contrast to the general belief, the dominant fate of these PACs is not degradation, and the aggregated reporter can be disassembled by chaperones and recovers native structure and activity. Using mass spectrometry, we show that thermo-unstable endogenous proteins form PACs as well. In conclusion, formation of PACs during heat shock is a chaperone-mediated adaptation strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2020.01.077 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
Development of radiosensitizers with high-energy deposition efficiency, electron transfer, and oxidative stress amplification will help to improve the efficiency of radiotherapy. To overcome the drawbacks of radiotherapy alone, it is also crucial to design a multifunctional radiosensitizer that simultaneously realizes multimodal treatment and tumor microenvironment modulation. Herein, a multifunctional radiosensitizer based on the CuBiS-BP@PEI nanoheterostructure (NHS) for multimodal cancer treatment is designed.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt.
This study investigates the protective effects of resveratrol (RSV) against heat stress (HS)-induced testicular injury in rats. Climate change has exacerbated heat stress, particularly affecting male fertility by impairing testicular function and sexual behavior. A total of 32 rats were allocated into four experimental groups: control, RSV control, HS control, and RSV + HS.
View Article and Find Full Text PDFMol Nutr Food Res
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
Fecal microbiota transplantation (FMT) could significantly alter the recipient's gut bacteria composition and attenuate obesity and obesity-related metabolic syndromes. DL-norvaline is a nonproteinogenic amino acid and possesses anti-obesity potential. However, the specific mechanisms by which gut microbiota might mediate beneficial effects of DL-norvaline have not been completely elucidated.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt.
This investigation represents porothermoelastic asphalt material with thermal shock due to multi-phase lag model of thermoelasticity. By applying proper boundary conditions to the normal mode approach, we were able to achieve the precise solution. The graphs provide numerical results for the physical quantities supplied in physical domain.
View Article and Find Full Text PDFMol Plant
January 2025
Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:
Plants are able to sense and remember heat stress. An initial priming heat stress enables plants to acclimate so that they are able to survive a subsequent higher temperature. The heatshock transcription factors (HSFs) play a crucial role in this process, but the mechanisms by which plants sense heat stress are not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!