Considerable work emphasizes a role for hippocampal circuits in governing contextual fear discrimination. However, the intra- and extrahippocampal pathways that route contextual information to cortical and subcortical circuits to guide adaptive behavioral responses are poorly understood. Using terminal-specific optogenetic silencing in a contextual fear discrimination learning paradigm, we identify opposing roles for dorsal CA3-CA1 (dCA3-dCA1) projections and dorsal CA3-dorsolateral septum (dCA3-DLS) projections in calibrating fear responses to certain and ambiguous contextual threats, respectively. Ventral CA3-DLS (vCA3-DLS) projections suppress fear responses in both certain and ambiguous contexts, whereas ventral CA3-CA1 (vCA3-vCA1) projections promote fear responses in both these contexts. Lastly, using retrograde monosynaptic tracing, ex vivo electrophysiological recordings, and optogenetics, we identify a sparse population of DLS parvalbumin (PV) neurons as putative relays of dCA3-DLS projections to diverse subcortical circuits. Taken together, these studies illuminate how distinct dCA3 and vCA3 outputs calibrate contextual fear discrimination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050277 | PMC |
http://dx.doi.org/10.1016/j.celrep.2020.01.055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!