Type I interferons (IFNs-I) fulfil multiple protective functions during pathogenic infections, but they can also cause detrimental effects and enhance immunopathology. Here, we report that IFNs-I promote the dysregulation of iron homeostasis in macrophages during systemic infections with the intracellular pathogen Candida glabrata, leading to fungal survival and persistence. By engaging JAK1, IFNs-I disturb the balance of the transcriptional activator NRF2 and repressor BACH1 to induce downregulation of the key iron exporter Fpn1 in macrophages. This leads to enhanced iron accumulation in the phagolysosome and failure to restrict fungal access to iron pools. As a result, C. glabrata acquires iron via the Sit1/Ftr1 iron transporter system, facilitating fungal intracellular replication and immune evasion. Thus, IFNs-I are central regulators of iron homeostasis, which can impact infection, and restricting iron bioavailability may offer therapeutic strategies to combat invasive fungal infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2020.01.023DOI Listing

Publication Analysis

Top Keywords

iron homeostasis
12
iron
9
candida glabrata
8
type interferon
4
interferon response
4
response dysregulates
4
dysregulates host
4
host iron
4
homeostasis enhances
4
enhances candida
4

Similar Publications

Multifaceted interplays between the essential players and lipid peroxidation in ferroptosis.

J Genet Genomics

January 2025

Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:

Ferroptosis, a type of programmed cell death, represents a distinct paradigm in cell biology. It is characterized by the iron-dependent accumulation of reactive oxygen species, which induce lipid peroxidation (LPO), and is orchestrated by the interplay between iron, lipid peroxides, and glutathione. In this review, we emphasize the frequently overlooked role of iron in LPO beyond the classical iron-driven Fenton reaction in several crucial processes that regulate cellular iron homeostasis, including iron intake and export as well as ferritinophagy, and the emerging roles of endoplasmic reticulum-resident flavoprotein oxidoreductases, especially P450 oxidoreductases, in modulating LPO.

View Article and Find Full Text PDF

Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis.

Front Biosci (Landmark Ed)

January 2025

The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder that profoundly impacts cognitive function and the nervous system. Emerging evidence highlights the pivotal roles of iron homeostasis dysregulation and microbial inflammatory factors in the oral and gut microbiome as potential contributors to the pathogenesis of AD. Iron homeostasis disruption can result in excessive intracellular iron accumulation, promoting the generation of reactive oxygen species (ROS) and oxidative damage.

View Article and Find Full Text PDF

Quorum Sensing Mediates Interaction with In Vitro.

Microorganisms

January 2025

Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China.

and are opportunistic pathogens that cause severe infections in hospitals, and their co-infections are increasingly reported. The interspecies interactions between these two bacterial species and their potential impacts on infections are largely unexplored. In this study, we first demonstrated that inhibits the growth of by iron chelating via quorum sensing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!