Background: Autotetraploid rice is a useful germplasm for polyploid rice breeding. Our previous research showed that non-coding RNAs might be associated with low fertility in autotetraploid rice. However, little information is available on long non-coding RNAs (lncRNAs) involved in the low fertility of autotetraploid rice. In the present study, RNA-seq was employed to detect the differentially expressed meiosis-related lncRNAs in autotetraploid rice, and gene overexpression and knock out experiments were used to validate the potential function of candidate lncRNA.

Results: A total of 444 differentially expressed lncRNAs (DEL) were detected during anther and ovary meiosis in autotetraploid rice. Of these, 328 DEL were associated with the transposable elements, which displayed low expression levels during meiosis in autotetraploid rice. We used rapid amplification of cDNA ends (RACE) assay to validate 10 DEL and found that the lncRNAs were not assembly artifacts, and six of them were conserved in tetraploid rice. Moreover, 237 and 20 lncRNAs were associated with pollen mother cell (PMC) and embryo sac mother cell (EMC) meiosis in autotetraploid rice, respectively. The differential expressions of some meiosis-related targets and its DEL regulator, including MEL1 regulated by TCONS_00068868, LOC_Os12g41350 (meiotic asynaptic mutant 1) by TCONS_00057811 in PMC, and LOC_Os12g39420 by TCONS_00144592 in EMC, were confirmed by qRT-PCR. TCONS_00057811, TCONS_00055980 and TCONS_00130461 showed anther specific expression patterns and were found to be highly expressed during meiosis. CRISPR/Cas9 editing of lncRNA57811 displayed similar morphology compared to wild type. The overexpression of lncRNA57811 resulted in low pollen fertility (29.70%) and seed setting (33%) in rice.

Conclusion: The differential expression levels of lncRNAs, associated with transposable elements and meiosis-regulated targets, might be endogenous noncoding regulators of pollen/embryo sac development that cause low fertility in autotetraploid rice. The results enhance our understanding about rice lncRNAs, and facilitate functional research in autotetraploid rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7032005PMC
http://dx.doi.org/10.1186/s12870-020-2290-0DOI Listing

Publication Analysis

Top Keywords

autotetraploid rice
40
low fertility
16
fertility autotetraploid
16
rice
13
differentially expressed
12
lncrnas associated
12
meiosis autotetraploid
12
autotetraploid
10
lncrnas
8
expressed lncrnas
8

Similar Publications

Background: Calcium-dependent protein kinases (CDPKs), play multiple roles in plant development, growth and response to bio- or abiotic stresses. Calmodulin-like domains typically contain four EF-hand motifs for Ca²⁺ binding. The CDPK gene family can be divided into four subgroups in Arabidopsis, and it has been identified in many plants, such as rice, tomato, but has not been investigated in alfalfa (Medicago sativa subsp.

View Article and Find Full Text PDF

Autotetraploid rice is a useful germplasm for polyploid rice breeding in improving nutritional values. Nevertheless, underlying mechanism of starch and lipid accumulation in tetraploid rice caryopsis remains largely unknown. Here, regulatory mode of starch and triacylglycerol (TAG) synthesis during grain-filling stage in diploid and tetraploid indica rice varieties 9311 was investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Pangenomics is becoming important in plant genomics, with many major crops having their genomes sequenced, though polyploid species like wheat and cotton have fewer pangenome resources available.
  • This review discusses the methods used in developing crop pangenomes, tackles challenges encountered, and provides a systematic guide, using alfalfa as a case study for polyploid species.
  • Pangenome resources help uncover important genetic information, and accessible online tools for visualizing pangenomes are expanding their use among scientists and breeders.
View Article and Find Full Text PDF

Autotetraploid rice shows distinct morphological, physiological, hormonal, and gene expression changes that enhance its resistance to rice blast.

View Article and Find Full Text PDF

DNA markers serve as essential tools in breeding selection and genetic analysis. However, developing DNA markers can be time-consuming and labor-intensive due to the need to identify polymorphisms between cultivars/lines and to design suitable primers. To address these challenges, we have developed DNAMarkMaker, a tool designed to automate the process of primer design for Amplification Refractory Mutation System (ARMS) and Cleaved Amplified Polymorphic Sequences (CAPS) markers, utilizing resequencing data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!