A high-fat diet (HFD) during pregnancy influences the neurodevelopment of progeny, particularly in the hippocampus, a brain region involved in cognitive processes. The hippocampus has high levels of leptin receptors (Ob-R) that participate in synaptic plasticity. This study examined the effect of maternal HFD during gestation on Ob-R expression in the CA1 and CA3 hippocampal regions, and its relationship with spatial learning and memory in the offspring. We used 48 rat pups: 24 from dams fed a balanced diet (BD, 6.2% fat) and 24 from those fed an HFD (42% fat) during pregnancy. We recorded weight gain and food intake in each pup every day beginning on postnatal day 3 (PND 3). Memory acquisition was assessed on PND 28 and memory retention on PND 42 in the Morris water maze (MWM). Then, 12 pups per group were selected randomly and subjected to bioimpedance spectroscopy. The remaining offspring was perfused to determine Ob-R expression levels in the CA1 and CA3 hippocampal regions. Interestingly, HFD pups had significantly higher weight gain, food intake, and fat mass than BD offspring. Interestingly, the HFD group showed poor memory performance, which correlated with changes in the Ob-R expression in both hippocampal regions. These data indicate that maternal exposure to HFD impacts neurodevelopmental and cognitive functions of the offspring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1028415X.2020.1728473 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!