A novel mechanical ventilator providing flow-controlled expiration for small animals.

Lab Anim

Department of Anesthesiology and Critical Care, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Published: December 2020

For investigating the effects of mechanical ventilation on the respiratory system, experiments in small mammal models are used. However, conventional ventilators for small animals are usually limited to a specific ventilation mode, and in particular to passive expiration. Here, we present a computer-controlled research ventilator for small animals which provides conventional mechanical ventilation as well as new type ventilation profiles. Typical profiles of conventional mechanical ventilation, as well as flow-controlled expiration and sinusoidal ventilation profiles can be generated with our new ventilator. Flow control during expiration reduced the expiratory peak flow rate by 73% and increased the mean airway pressure by up to 1 mbar compared with conventional ventilation without increasing peak pressure and end-expiratory pressure. Our new ventilator for small animals allows for the application of various ventilation profiles. We could analyse the effects of applying conventional ventilation profiles, pressure-controlled ventilation and volume-controlled ventilation, as well as the novel flow-controlled ventilation profile. This new approach enables studying the mechanical properties of the respiratory system with an increased freedom for choosing independent ventilation parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0023677220906857DOI Listing

Publication Analysis

Top Keywords

small animals
16
ventilation profiles
16
ventilation
13
mechanical ventilation
12
ventilation well
12
flow-controlled expiration
8
respiratory system
8
ventilator small
8
conventional mechanical
8
conventional ventilation
8

Similar Publications

KRAS is a proto-oncogene that is found to be mutated in 15% of all metastatic cancers with high prevalence in pancreatic, lung, and colorectal cancers. Additionally, patients harboring KRAS mutations respond poorly to standard cancer therapy. As a result, KRAS is seen as an attractive target for targeted anticancer therapy.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.

View Article and Find Full Text PDF

Targeting KRAS: from metabolic regulation to cancer treatment.

Mol Cancer

January 2025

Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.

The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance.

View Article and Find Full Text PDF

Background: The observed growth variability of different aquaculture species in captivity hinders its large-scale production. For the sandfish Holothuria scabra, a tropical sea cucumber species, there is a scarcity of information on its intestinal microbiota in relation to host growth, which could provide insights into the processes that affect growth and identify microorganisms with probiotic or biochemical potential that could improve current production strategies. To address this gap, this study used 16 S rRNA amplicon sequencing to characterize differences in gut and fecal microbiota among large and small juveniles reared in floating ocean nurseries.

View Article and Find Full Text PDF

Clinical treatment options for triple-negative breast cancer (TNBC) are currently limited to chemotherapy because of a lack of effective therapeutic targets. Recent evidence suggests that long noncoding RNAs (lncRNAs) encode bioactive peptides or proteins, thereby playing noncanonical yet significant roles in regulating cellular processes. However, the potential of lncRNA-translated products in cancer progression remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!