Supramolecular and Liquid Crystalline Contributions to the Assembly of Myofibril.

Molecules

Chemistry Department, Duke University, Durham, NC 27708, USA.

Published: February 2020

We compare steps observed during the fibrillogenesis of myofibrils with the sequence of steps predictable by a recent analysis of the structurization and functioning of striated muscles. The predicted assembly steps are based solely on fundamental equilibrium processes, particularly supramolecular interactions and liquid crystalline alignment of the rigid thick and thin filaments hosted within the sarcomer. Satisfactory agreement is obtained between several of the observed and the predicted fibrillogenesis steps. In several cases, however, the actual steps appear to be more complex than expected, evidencing the occurrence of transport and kinetic pathways that may assist the attainment of the equilibrium structure. The memory of the order of a precursor mesophase is imprinted during the remodeling of the surfaces at which the two sets of filaments are anchored. The relevance of the present analysis to the functioning of the myofibril is considered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070872PMC
http://dx.doi.org/10.3390/molecules25040862DOI Listing

Publication Analysis

Top Keywords

liquid crystalline
8
steps
5
supramolecular liquid
4
crystalline contributions
4
contributions assembly
4
assembly myofibril
4
myofibril compare
4
compare steps
4
steps observed
4
observed fibrillogenesis
4

Similar Publications

Review of honeycomb-based Kitaev materials with zigzag magnetic ordering.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

The search for a Kitaev quantum spin liquid in crystalline magnetic materials has fueled intense interest in the two-dimensional honeycomb systems. Many promising candidate Kitaev systems are characterized by a long-range-ordered magnetic structure with an antiferromagnetic zigzag-type order, where the static moments form alternating ferromagnetic chains. Recent experiments on high-quality single crystals uncovered the existence of intriguing multi-k magnetic structures, which evolved from zigzag structures.

View Article and Find Full Text PDF

From molecular dynamics (MD) simulations of melt-quenching and thermal aging procedures in pure Ag, Cu, Ag-Cu binary alloys, and Cu-Zr binary alloys, we have identified two distinct amorphous phases for a metastable undercooled liquid: the homogeneous L-phase with low shear rigidity and the heterogenous G-phase with much higher shear rigidity and a heterogeneity length scale Λ. Here, we examine two-phase equilibration studies showing that the G-phase melts to form the L-phase above ~1,000 K, which then transforms to form the crystal (X) phase; however, below the melting point of the G-Phase (~990 K), the X- and G-phases do not transform into each other. We suggest the presence of a G-phase is likely responsible for embrittlement often observed in metallic glasses.

View Article and Find Full Text PDF

When nematic liquid crystal elastomers (LCEs) crosslinked at their isotropic phase are quenched to the nematic phase, they show polydomain patterns, in which nematic microdomains with different orientations self-organize into a three-dimensional mosaic with characteristic correlation patterns. The orientational correlation length of the domain, which is usually in the micrometer range, is believed to emerge as a result of a competition between liquid crystalline ordering and frozen network inhomogeneity. Although polydomain patterns show potentials as the basic platform for optical, memory, and mechanical devices, no study exists regarding how they are modulated by experimentally accessible parameters.

View Article and Find Full Text PDF

Dieckol is a brown algal phlorotannin with potent bioactivities such as hepatoprotective effects. This study aimed to produce dieckol-rich extract from Eisenia bicyclis and apply them as a functional ingredient for a novel bacterial cellulose (BC)-based dessert. The modeling and optimization of the ultrasound-assisted extraction (UAE) process were performed.

View Article and Find Full Text PDF

To further improve the leaching behavior of chromite in the submolten salt medium of NaOH-HO, a microwave roasting pretreatment for chromite is proposed in the present work. Effects of the roasting pretreatment modes and reaction parameters on the leaching rate of Cr were systematically investigated. The results showed that the leaching rate of Cr from the chromite ore could be greatly boosted after microwave roasting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!