p53's Extended Reach: The Mutant p53 Secretome.

Biomolecules

Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, Hans-Meerwein-Straße 3, 35043 Marburg, Germany.

Published: February 2020

AI Article Synopsis

  • p53 plays a critical role in preventing tumor growth by activating various pathways that can limit the survival and replication of cancer cells, both inside and outside the cell.
  • It regulates the expression and secretion of proteins and substances released into the extracellular space, which are important for cell communication and the remodeling of the surrounding environment.
  • Mutations in the p53 gene are common in cancer and significantly alter the tumor cell secretome, contributing to a supportive environment for tumors and preparing other organs for potential cancer spread.

Article Abstract

p53 suppresses tumorigenesis by activating a plethora of effector pathways. While most of these operate primarily inside of cells to limit proliferation and survival of incipient cancer cells, many extend to the extracellular space. In particular, p53 controls expression and secretion of numerous extracellular factors that are either soluble or contained within extracellular vesicles such as exosomes. As part of the cellular secretome, they execute key roles in cell-cell communication and extracellular matrix remodeling. Mutations in the p53-encoding gene are the most frequent genetic alterations in cancer cells, and therefore, have profound impact on the composition of the tumor cell secretome. In this review, we discuss how the loss or dominant-negative inhibition of wild-type p53 in concert with a gain of neomorphic properties observed for many mutant p53 proteins, shapes a tumor cell secretome that creates a supportive microenvironment at the primary tumor site and primes niches in distant organs for future metastatic colonization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072272PMC
http://dx.doi.org/10.3390/biom10020307DOI Listing

Publication Analysis

Top Keywords

mutant p53
8
cancer cells
8
tumor cell
8
cell secretome
8
p53
5
p53's extended
4
extended reach
4
reach mutant
4
secretome
4
p53 secretome
4

Similar Publications

MDM2 and MDM4 are major negative regulators of tumor suppressor p53. Beyond regulating p53, MDM2 possesses p53-independent activity in promoting cell cycle progression and tumorigenesis via its RING domain ubiquitin E3 ligase activity. MDM2 and MDM4 form heterodimer polyubiquitin E3 ligases via their RING domain interaction.

View Article and Find Full Text PDF

Cabozantinib Selectively Induces Proteasomal Degradation of p53 Somatic Mutant Y220C and Impedes Tumor Growth.

J Biol Chem

January 2025

Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University; Jiangsu, China. Electronic address:

Inactivation of p53 by mutations commonly occurs in human cancer. The mutated p53 proteins may escape proteolytic degradation and exhibit high expression in tumors, and acquire gain-of-function activity that promotes tumor progression and chemo-resistance. Therefore, selectively targeting of the gain-of-function p53 mutants may serve as a promising therapeutic strategy for cancer prevention and treatment.

View Article and Find Full Text PDF

Li-Fraumeni syndrome: a germline splice variant reveals a novel physiological alternative transcript.

J Med Genet

January 2025

Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France

Background: Li-Fraumeni syndrome (LFS) predisposes individuals to a wide range of cancers from childhood onwards, underscoring the crucial need for accurate interpretation of germline variants for optimal clinical management of patients and families. Several unclassified variants, particularly those potentially affecting splicing, require specialised testing. One such example is the NM_000546.

View Article and Find Full Text PDF

Supplying LSD1 with FAD in pancreatic cancer: a matter of protein-protein interaction?

Arch Biochem Biophys

January 2025

Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy. Electronic address:

Lysine-specific demethylase 1 (LSD1) is a key regulator in cancer epigenetic, and its activity is reliant on flavin adenine dinucleotide (FAD) as a cofactor. In this study, we investigated the correlation between LSD1 and FAD synthase isoform 2 (FADS2) protein levels in pancreatic ductal adenocarcinoma (PDAC) cell lines. We first assessed LSD1 protein and mRNA levels in mutant p53-expressing PANC-1 and MiaPaCa2 cells and p53-null AsPc-1 cells, compared to human pancreatic ductal epithelial (HPDE) controls.

View Article and Find Full Text PDF

POLE status determination is necessary for the molecular classification of endometrial carcinomas (EC). However, this determination is only achievable by molecular techniques, which are not available in many practice settings. A previously published study reported elevated AMF/GPI and AMFR/gp78 levels in POLE-mutant EC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!