Zero valent iron (ZVI) is being used in permeable reactive barriers (PRB) for the removal of oxidant contaminants, from nitrate to chlorinated organics. A sound design of these barriers requires a good understanding of kinetics. Here we present a study of the kinetics of nitrate reduction under relatively low values of pH, from 2 to 4.5. We use a particle size of 0.42 mm, which is within the recommended size for PRBs (0.2 mm to 2.0 mm). In order to avoid possible mass-transfer limitations, a well-stirred reactor coupled with a fluidized bed reactor was used. The experiments were performed at constant pH values using a pH controller that allows to accurately track the amount of acid added. Since the reduction of H + to H 2 by the oxidation of ZVI will always be present for these pH values, blank experiments (without nitrate) were performed and the rate of this H + reduction obtained. This rate of reduction was studied using three kinetic models: a regular empirical one, the Shrinking-Core Model (SCM), and the Surface Kinetics Model (SKM). The best performance was obtained from the SKM model. Therefore, this model was also used to study the results for the nitrate reduction, also with satisfactory results. In both cases, some assumptions are introduced to maintain a moderate number of fitting parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068433PMC
http://dx.doi.org/10.3390/ijerph17041241DOI Listing

Publication Analysis

Top Keywords

surface kinetics
8
nitrate reduction
8
rate reduction
8
nitrate
5
reduction
5
chemical reduction
4
reduction nitrate
4
nitrate zero-valent
4
zero-valent iron
4
iron shrinking-core
4

Similar Publications

Condensate droplet roaming on nanostructured superhydrophobic surfaces.

Nat Commun

January 2025

Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.

Jumping of coalescing condensate droplets from superhydrophobic surfaces is an interesting phenomenon which yields marked heat transfer enhancement over the more explored gravity-driven droplet removal mode in surface condensation, a phase change process of central interest to applications ranging from energy to water harvesting. However, when condensate microdroplets coalesce, they can also spontaneously propel themselves omnidirectionally on the surface independent of gravity and grow by feeding from droplets they sweep along the way. Here we observe and explain the physics behind this phenomenon of roaming of coalescing condensate microdroplets on solely nanostructured superhydrophobic surfaces, where the microdroplets are orders of magnitude larger than the underlaying surface nanotexture.

View Article and Find Full Text PDF

Terdizolamide phosphate (TZD), a second-generation oxazolidinone antibiotic with a long half-cycle, poses a potential threat to ecosystems and humans if present in water over an extended duration. Magnetic biochar (CF-biochar) loaded with CeFeO was firstly synthesized by microwave ablation-anaerobic carbonization using corn straw as raw material and Ce(NO) and Fe(NO) as modifiers. These modifiers were used as activators for peroxymonosulfate (PMS) and adsorbents for removing TZD.

View Article and Find Full Text PDF

Efficient Methanol Oxidation Kinetics Enabled by an Ordered Heterocatalyst with Dual Electric Fields.

J Am Chem Soc

January 2025

Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.

Induced by a sharp-tip-enhanced electric field, periodical nanoassemblies can regulate the reactant flux on the electrode surface, efficiently optimizing the mass transfer kinetics in electrocatalysis. However, when the nanoscale building blocks in homoassemblies are arranged densely, it results in the overlap and reduction of the local electric field. Herein, we present a comprehensive kinetic heteromodel that simultaneously couples the sharp-tip-enhanced electric field and charge transfer electric field between different building blocks with any arrangement densities.

View Article and Find Full Text PDF

In a previous publication, we determined the kinetics and equilibrium for the sorption of propylparaben to polyvinyl chloride (PVC). In this work, we extend that study to investigate the sorption of methylparaben and propylparaben on tubing surfaces made of PVC and fluorinated ethylene propylene (FEP) using molecular dynamics simulations. The simulations suggest the mechanism of sorption to be adsorption.

View Article and Find Full Text PDF

Nerve growth factor loaded hypotonic eye drops for corneal nerve repair.

J Control Release

January 2025

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China. Electronic address:

Neurotrophic keratopathy is a degenerative disease caused by corneal nerve damage, leading to corneal ulceration. Recombinant human nerve growth factor (rhNGF) was approved for neurotrophic keratitis therapy; however, the excipients of the eye drops are not optimized for its controlled release. To this aim, we introduce the hypotonic hydrogel PF127 as an excipient for rhNGF in eye drops.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!