Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This article presents the results of model tests aiming to verify the possibility of applying commercial plasticine as a model material for modelling the limits to the cross-wedge rolling process. This study presents a comparison of the results of laboratory testing and physical modelling of cross-wedge rolling (CWR) processes. Commercial plasticine was the model material used in the research to model 50HS grade steel formed in 1150 ˚C. The model material was cooled to 0°C, 5°C, 10°C, 12,5°C, and 15°C. Physical modelling of neckings and slippages is only possible when the plasticine is heated to 12.5˚C prior to forming. Commercial plasticine does not enable one to model the cracking process inside the rolled element.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079662 | PMC |
http://dx.doi.org/10.3390/ma13040867 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!