Despite that millions of people suffer from major depressive disorder (MDD), the mechanism underlying MDD remains elusive. Recently, it has been reported that entorhinal cortex (EC) functions on the regulation of depressive-like phenotype relying on the stimulation of glutamatergic afferent from EC to hippocampus. Based on this, we used liquid chromatography-tandem mass spectrometry method to explore metabolic alterations in the EC of mice after exposed to chronic restraint stress (CRS). Molecular validation was conducted via the application of western blot and RT-qPCR. Through this study, we found significant upregulation of glutamate, ornithine aspartic acid, 5-hydroxytryptophan, L-tyrosine and norepinephrine in CRS group, accompanied with downregulation of homovanillic acid. Focusing on these altered metabolic pathways in EC, we found that gene levels of , and were increased. Upregulation of SERT and EAAT2 in protein expression level were also validated, while no significant changes were found in TH, AADC, MAOA, VMAT2, GAD1, GLUL and SNAT1. Our findings firstly provide evidence about the alteration of metabolites and related molecules in the EC of mice model of depression, implying the potential mechanism in MDD pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041782PMC
http://dx.doi.org/10.18632/aging.102798DOI Listing

Publication Analysis

Top Keywords

chronic restraint
8
restraint stress
8
mice model
8
model depression
8
entorhinal cortex-based
4
cortex-based metabolic
4
metabolic profiling
4
profiling chronic
4
stress mice
4
depression despite
4

Similar Publications

Chronic stress can result in various conditions, including psychological disorders, neurodegenerative diseases, and accelerated brain aging. Gut dysbiosis potentially contributes to stress-related brain disorders in individuals with chronic stress. However, the causal relationship and key factors between gut dysbiosis and brain disorders in chronic stress remain elusive, particularly under non-sterile conditions.

View Article and Find Full Text PDF

Sensory disabilities have been identified as significant risk factors for dementia but underlying molecular mechanisms are unknown. In different Drosophila models with loss of sensory input, we observe non-autonomous induction of the integrated stress response (ISR) deep in the brain, as indicated by eIF2α phosphorylation-dependent elevated levels of the ISR effectors ATF4 and XRP1. Unlike during canonical ISR, however, the ATF4 and XRP1 transcription factors are enriched in cytosolic granules that are positive for RNA and the stress granule markers Caprin, FMR1, and p62, and are reversible upon restoration of vision for blind flies.

View Article and Find Full Text PDF

Objective: Anxiety and depression-like symptoms occur in the early stages of Alzheimer's disease. Hippocampal Sirtuin 1 (SIRT1) signaling mediates anxiety- and depression-like behavior. Exercise training improves anxiety and depression-like behavior in various disease models, such as the rat chronic restraint stress model, rat model of posttraumatic stress disorder, and rat model of fetal alcohol spectrum disorders.

View Article and Find Full Text PDF

Stress occurs as a reaction to mental and emotional pressure, anxiety, or scarring. Chronic stress is defined as constant submission to these moments. It can affect several body systems, increase blood pressure, and weaken immunity, thereby interfering with physiological health processes.

View Article and Find Full Text PDF

In response to stressors, individuals manifest varied behavioral responses directed toward satisfying physiological survival needs. Although the enduring effects of adolescent stress on both humans and animals are well-documented, the underlying mechanisms remain insufficiently elucidated. Utilizing immunofluorescence, viral injections, and brain slice electrophysiological recordings, we have delineated that heightened excitability among glutamatergic neurons in the basolateral amygdala (BLA) is responsible for inducing heightened exploratory behaviors in adolescent mice subjected to mild, chronic restraint stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!