Effects of low-intensity pulsed ultrasound exposure on rats tibia periosteum.

An Acad Bras Cienc

Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas/UNICAMP, Programa de Pós-Graduação em Biologia Celular e Estrutural, Avenida Bertrand Russel, s/n, 13083-865 Campinas, SP, Brazil.

Published: April 2020

The periosteum is a rich source of osteoprogenitor cells and periosteal grafts can be used as an alternative method to replace bone grafts. The low-intensity pulsed ultrasound (LIPUS) has often been used as a noninvasive method to stimulate osteogenesis and reduce the fracture healing time. The aim of this study was to evaluate the effects of the ultrasound exposure on the rat tibia periosteum. Group I (7 animals) received LIPUS therapy on the left tibia for 7 days and group II (7 animals) on the left tibia for 14 days. After euthanasia, the tibias were processed. Number of periosteal cells and vessels and thickness of the periosteum were analyzed. The number of periosteal cells was higher in stimulated periosteum compared to controls at 7 and 14 days, but the number of vessels and the thickness only were higher in the group stimulated at 14 days. Furthermore, the ultrasound treatment for 14 days was more effective than 7 days. The ultrasound stimulation of the periosteum prior to grafting procedure can be advantageous, since it increases periosteal activity, and LIPUS may be an alternative method for stimulating the periosteum when the use of periosteal grafts in bone repair is needed.

Download full-text PDF

Source
http://dx.doi.org/10.1590/0001-3765202020180903DOI Listing

Publication Analysis

Top Keywords

low-intensity pulsed
8
pulsed ultrasound
8
ultrasound exposure
8
tibia periosteum
8
periosteal grafts
8
alternative method
8
group animals
8
left tibia
8
tibia days
8
number periosteal
8

Similar Publications

Characterization of LIPUS Parameters Suitable for Hip Bone Fracture.

Ultrasound Med Biol

January 2025

Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China. Electronic address:

Objective: To investigate the effects of ultrasound treatment on the healing of hip bone fractures using frequencies of 0.5 MHz and 1.5 MHz with constant intensity (30 mW/cm) at the fractured site.

View Article and Find Full Text PDF

H*10 neutron dosimetry (unlike gamma dosimetry), requires consideration of neutron energy spectra due to the 20× variation of the weight factor over the thermal-to-fast energy range, as well as the neutron radiation field dose rates ranging from cosmic, ~.01 μSv h-1 levels to commonly encountered ~10-200 μSv h-1 in nuclear laboratories/processing plants, and upwards of 104 Sv h-1 in nuclear reactor environments. This paper discusses the outcome of the comparison of spectrum-weighted neutron dosimetry covering thermal-to-fast energy using the novel H*-TMFD spectroscopy-enabled sensor system in comparison with measurements using state-of-the-art neutron dosimetry systems at SRNS-Rotating Spectrometer (ROSPEC), and non-spectroscopic Eberline ASP2E ("Eberline") and Ludlum 42-49B ("Ludlum") survey instrumentation.

View Article and Find Full Text PDF

Early diagnosis of pancreatic ductal adenocarcinoma (PDAC) is challenging because of its depth, which often leads to misdiagnosis during ultrasound examinations. The unique PDAC tumor microenvironment (TME) is characterized by significant fibrous tissue growth, and high interstitial pressure hinders drug penetration into tumors. Additionally, hypoxia and immune suppression within the tumor contribute to poor responses to radiotherapy and chemotherapy, ultimately leading to an unfavorable prognosis.

View Article and Find Full Text PDF

Trigeminal neuralgia (TN) is an excruciating neurological disorder characterized by intense, stimulus-induced, and transient facial stabbing pain. The classification of TN has changed as a result of new discoveries in the last decade regarding its symptomatology, pathogenesis, and management. Because different types of facial pain have different clinical therapy and neuroimaging interpretations, a precise diagnosis is essential.

View Article and Find Full Text PDF

Cartilage repair remains a critical challenge in orthopaedic medicine due to the tissue's limited self-healing ability, contributing to degenerative joint conditions such as osteoarthritis (OA). In response, regenerative medicine has developed advanced therapeutic strategies, including cell-based therapies, gene editing, and bioengineered scaffolds, to promote cartilage regeneration and restore joint function. This narrative review aims to explore the latest developments in cartilage repair techniques, focusing on mesenchymal stem cell (MSC) therapy, gene-based interventions, and biomaterial innovations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!