In the past few years, dynamic computed tomography (CT) approaches or uninterrupted acquisitions of deforming materials have rapidly emerged as an essential technique to understand material evolution, facilitating in situ investigations ranging from mechanical deformation to fluid flow in porous materials and beyond. Developments at synchrotron facilities have led this effort, pointing to the future of the technique. In the laboratory, recent developments at TESCAN XRE have made it possible to image, reconstruct and inspect dynamic processes in the laboratory with a temporal resolution below 10 s, meaning that an entire acquisition from 0 to 360° is completed within 10 s. The aim of this study is to explore the challenges and innovations that have led to the ability to perform high speed, dynamic acquisitions. A unique horizontally rotating gantry based micro-CT system was developed to facilitate complex in situ experiments. In doing so, the sample stays fixed while source and detector are uninterruptedly rotating around a vertical axis. In this work, the dynamic CT method with this rotating gantry based system will be described by two application examples: (1) deformation and collapse of a delicate beer foam and (2) in situ baking process of pastry. For the pastry baking process, an oven was needed to reach baking temperature. In a conventional micro-CT system, where the sample rotates, it is not so obvious to rotate an oven with sensor and heating cables. On the other hand, the delicate foam of a collapsing beer head is able to rotate, but because of the tangential convection during fast rotation (<10 s), it could influence the bubble detachment and liquid drainage and thus also the foam degradation. To investigate both processes, a horizontally rotating gantry based micro-CT is required. For both examples it was possible to quantify the key parameters such as pore size and distribution to better understand the rise and fall of porous foams. These examples will highlight the recent progress in adapting micro-CT workflows to accommodate uninterrupted imaging of dynamic events and point to opportunities for future continued development. LAY DESCRIPTION: Micro-CT allows the nondestructive visualisation of internal structures and is being used routinely in the field of Material Science, Geoscience, Life Science and more. Because of its nondestructive aspect, micro-CT is optimal to take repetitive scans of the same sample over time. The combination of taking different scans over time is so called time-resolved CT. By doing so, crucial insights can be obtained on how materials form, deform and perform over time or under certain external conditions. TESCAN XRE have made it possible to image, reconstruct and inspect dynamic processes in the laboratory with a temporal resolution below 10 s. The dynamic CT method will be described through the lens of two application examples: (1) deformation and collapse of a delicate beer foam and (2) in situ baking process of pastry. These examples will highlight the recent progress in adapting micro-CT workflows to accommodate imaging of dynamic events and point to opportunities for future continued development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jmi.12879 | DOI Listing |
J Appl Clin Med Phys
January 2025
Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands.
Introduction: This paper describes a method to improve gantry-dependent beam steering for Elekta traveling wave linear accelerators by applying the measured and filtered beam servo corrections to the existing lookup table (LUT). Beam steering has a direct influence on the treatment accuracy by affecting the beam symmetry and position. The presented method provides an improved LUT with respect to the default Elekta method to reduce treatment delivery interruptions.
View Article and Find Full Text PDFMed Phys
December 2024
The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA.
Background: Automation in radiotherapy presents a promising solution to the increasing cancer burden and workforce shortages. However, existing automated methods for breast radiotherapy lack a comprehensive, end-to-end solution that meets varying standards of care.
Purpose: This study aims to develop a complete portfolio of automated radiotherapy treatment planning for intact breasts, tailored to individual patient factors, clinical approaches, and available resources.
Front Oncol
December 2024
Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, Republic of Korea.
Purpose: This study presents novel quality assurance (QA) approach for volumetric modulated arc therapy (VMAT) that leverages frame-by-frame electronic portal imaging device (EPID) images integrated into Mobius3D for accurate three-dimensional dose calculations.
Methods: Sequential EPID images for VMAT plans were acquired every 0.4-second by iView system and processed through iterative deconvolution to mitigate blurring from photon scattering.
Radiology
December 2024
From the Centro Cardiologico Monzino, IRCCS, Via C. Belgioioso 173, Milan, Italy (D.A., S.M., D.T., E.C., G.L., S. Galli, G.M., L.G., G.T., S.T., S. Gili, P.M., P.O., V.M., D.M., M.S., C.G., E.M., A.B., M.E.M., A.A., A F., G.P., A.L.B.); Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy (D.A.); IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy (E.C., G.M., L.G., V.M., D.M., M.S., E.G., P.P., E.M., A.L.B.); Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium (J.S., M.B., E.G., P.P., K.S., T.M., C.C.); Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan (K.S., T.M.); Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy (G.P.); and Department of Radiology, Azienda Ospedaliera di Padova, Padua, Italy (L.Z.).
Background The detection of in-stent restenosis (ISR) with coronary CT angiography (CCTA) is challenging, but CT perfusion (CTP) has demonstrated improved diagnostic accuracy over CCTA in patients with stents. However, there are limited data on the performance of dynamic CTP, which allows noninvasive adjudication of regional myocardial blood flow. Purpose To compare the diagnostic performance of regadenoson-stress dynamic CTP with that of CCTA, using fractional flow reserve (FFR) and the index of microvascular resistance (IMR) as reference standards for epicardial coronary circulation and coronary microcirculation, respectively.
View Article and Find Full Text PDFArXiv
November 2024
Department of Radiation Oncology, University of Kansas Medical Center, USA.
Objective: Proton spot-scanning arc therapy (ARC) is an emerging modality that can improve the high-dose conformity to targets compared with standard intensity-modulated proton therapy (IMPT). However, the efficient treatment delivery of ARC is challenging due to the required frequent energy changes during the continuous gantry rotation. This work proposes a novel method that delivers a multiple IMPT (multi-IMPT) plan that is equivalent to ARC in terms of biologically effective dose (BED).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!