A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation of Barije (Ferula gummosa) Essential Oil-Loaded Liposomes and Evaluation of Physical and Antibacterial Effect on Escherichia coli O157:H7. | LitMetric

Abstract: The aim of this study was to load liposomes with Barije (Ferula gummosa) essential oil (EO) and to evaluate their physical and antibacterial properties. Liposomes were produced with specific ratios of lecithin/cholesterol by thin-film hydration and sonication. The chemical composition of the EO was analyzed by gas chromatography and mass spectroscopy. The physical properties of the liposomes (particle size, polydispersity index, zeta potential, and encapsulation efficiency) were evaluated. The antimicrobial effects of these liposomes against Escherichia coli O157:H7 were determined based on the MIC and disk diffusion results. The effect of subinhibitory concentrations (sub-MICs) of EO against the growth of the bacterium over 24 h was evaluated before and after encapsulation. The major components of EO were β-pinene (60.84%) and α-pinene (9.14%). The mean liposome radius of EO-loaded liposomes was 74.27 to 99.93 nm, which was significantly different from that of the empty liposomes (138.76 nm) (P < 0.05). Addition of cholesterol to the lecithin bilayer increased the particle size and reduced the encapsulation efficiency (P < 0.05). The electrostatic stability of the empty liposomes was improved by adding cholesterol, but when the EO was replaced in the liposomes, there was no significant change in electrostatic stability of liposomes with cholesterol (P < 0.05). MICs were 14.5 μg/mL for the EO-loaded nanoliposomes containing 30 mg of lecithin and 30 mg of cholesterol and 10 μg/mL for nonencapsulated EO. This trend was confirmed by measuring the inhibition zone diameter. Sub-MICs of liposomal EO (containing 60 mg of lecithin) decreased bacterial levels to a greater degree than did free EO, especially at 50 and 75% of the MIC.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028X.JFP-19-285DOI Listing

Publication Analysis

Top Keywords

liposomes
10
barije ferula
8
ferula gummosa
8
gummosa essential
8
physical antibacterial
8
escherichia coli
8
coli o157h7
8
properties liposomes
8
particle size
8
encapsulation efficiency
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!