Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The molecular mobility of cyclic molecules (e.g.α-cyclodextrins) threaded along a linear polymer chain (e.g. poly(ethylene glycol)) in polyrotaxanes is a unique feature for biomaterials with dynamic functionality. Surfaces with molecular mobility can be obtained by introducing polyrotaxanes. The molecular mobility of polyrotaxane-based surfaces can be modulated by changing the number of threaded cyclic molecules and modifying their functional groups. Biological ligands modified with α-cyclodextrins exhibit increased multivalent interactions with their receptors due to the molecular mobility of the latter. Furthermore, polyrotaxane-based surfaces not only improve the initial response of cells via multivalent interactions, but also affect cytoskeleton formation and the inherent quality of cells, including differentiation. Such polyrotaxane surfaces can emerge as new biointerfaces that can adapt to the dynamic biological nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9tb00256a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!