Tailless/TLX reverts intermediate neural progenitors to stem cells driving tumourigenesis via repression of .

Elife

The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.

Published: February 2020

Understanding the sequence of events leading to cancer relies in large part upon identifying the tumour cell of origin. Glioblastoma is the most malignant brain cancer but the early stages of disease progression remain elusive. Neural lineages have been implicated as cells of origin, as have glia. Interestingly, high levels of the neural stem cell regulator TLX correlate with poor patient prognosis. Here we show that high levels of the TLX homologue, Tailless, initiate tumourigenesis by reverting intermediate neural progenitors to a stem cell state. Strikingly, we could block tumour formation completely by re-expressing Asense (homologue of human ASCL1), which we show is a direct target of Tailless. Our results predict that expression of TLX and ASCL1 should be mutually exclusive in glioblastoma, which was verified in single-cell RNA-seq of human glioblastoma samples. Counteracting high TLX is a potential therapeutic strategy for suppressing tumours originating from intermediate progenitor cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058384PMC
http://dx.doi.org/10.7554/eLife.53377DOI Listing

Publication Analysis

Top Keywords

intermediate neural
8
neural progenitors
8
progenitors stem
8
high levels
8
stem cell
8
tailless/tlx reverts
4
reverts intermediate
4
neural
4
stem cells
4
cells driving
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!