A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recent Advances of Two-Dimensional (2 D) MXenes and Phosphorene for High-Performance Rechargeable Batteries. | LitMetric

The design and development of advanced electrode materials for high-performance rechargeable batteries have been subjected to extensive studies. Very recently, two-dimensional (2 D) nanomaterials have become promising candidates for batteries, owing to their unique physicochemical properties. In particular, MXenes and phosphorene, which exhibit tailored electrical conductivity and ion storage capability, have attracted increasing attention. This Review presents a comprehensive summary of recent advances in the development of 2 D MXenes and phosphorene as electrode materials for high-performance batteries. Their physicochemical properties, including structural configurations and electronic properties of MXenes and direct band gap and anisotropic properties of phosphorene, are firstly discussed. Then, synthesis methods of the two materials are introduced. Thereafter, their applications as electrode materials in batteries, including lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), potassium-ion batteries (PIBs), lithium-sulfur (Li-S) batteries, and metal-air batteries, are summarized and discussed in detail. An emphasis is placed on analyzing performance enhancement mechanisms to elucidate fundamental understanding. Finally, future challenges and opportunities for MXenes and phosphorene as electrode materials for batteries are considered.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202000061DOI Listing

Publication Analysis

Top Keywords

mxenes phosphorene
16
electrode materials
16
batteries
11
two-dimensional 2 d
8
2 d mxenes
8
high-performance rechargeable
8
rechargeable batteries
8
materials high-performance
8
physicochemical properties
8
properties mxenes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!