Extension of the Quantum Universal Exchange Language to precision medicine and drug lead discovery. Preliminary example studies using the mitochondrial genome.

Comput Biol Med

Ingine Inc., Delaware, USA; The Dirac Foundation, OxfordShire, UK. Electronic address:

Published: February 2020

The Quantum Universal Exchange Language (Q-UEL) based on Dirac notation and algebra from quantum mechanics, along with its associated data mining and Hyperbolic Dirac Net (HDN) for probabilistic inference, has proven to be a useful architectural principle for knowledge management, analysis and prediction systems in medicine. It has been described in several papers; here is described its extension to clinical genomics and precision medicine. Two use cases are studied: (a) bioinformatics in clinical decision support especially for risk for type 2 diabetes using mitochondrial patient DNA sequences, and (b) bioinformatics and computational biology (conformational) research examples related to drug discovery involving the recently discovered class of mitochondrial derived peptides (MDPs). MDPs were surprising when first discovered as coded in small open reading frames (sORFs), and are emerging as having a fundamental role in metabolic control, longevity and disease. This project originally represented a language specification study relating to what information related to genomics is essential or useful to carry, and what processing will be needed. However, novel aspects introduced or discovered include the HDN-like neural nets and their use, along with more established methods, for prediction of type 2 diabetes, and in particular for proposals for over 80 natural MDPs most of which that have not previously been described at the time of the study, as potential drug lead targets. Also, use of many medical records with simulated joining of mtDNA as performance tests led to some insightful observations regarding the behavior of HDN predictions where independent factors are involved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2020.103621DOI Listing

Publication Analysis

Top Keywords

quantum universal
8
universal exchange
8
exchange language
8
precision medicine
8
drug lead
8
type diabetes
8
extension quantum
4
language precision
4
medicine drug
4
lead discovery
4

Similar Publications

Recent studies on topological materials are expanding into the nonlinear regime, while the central principle, namely the bulk-edge correspondence, is yet to be elucidated in the strongly nonlinear regime. Here, we reveal that nonlinear topological edge modes can exhibit the transition to spatial chaos by increasing nonlinearity, which can be a universal mechanism of the breakdown of the bulk-edge correspondence. Specifically, we unveil the underlying dynamical system describing the spatial distribution of zero modes and show the emergence of chaos.

View Article and Find Full Text PDF

Hamiltonian learning for 300 trapped ion qubits with long-range couplings.

Sci Adv

January 2025

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China.

Quantum simulators with hundreds of qubits and engineerable Hamiltonians have the potential to explore quantum many-body models that are intractable for classical computers. However, learning the simulated Hamiltonian, a prerequisite for any quantitative applications of a quantum simulator, remains an outstanding challenge due to the fast increasing time cost with the qubit number and the lack of high-fidelity universal gate operations in the noisy intermediate-scale quantum era. Here, we demonstrate the Hamiltonian learning of a two-dimensional ion trap quantum simulator with 300 qubits.

View Article and Find Full Text PDF

We uncover emergent universality arising in the equilibration dynamics of multimode continuous-variable systems. Specifically, we study the ensemble of pure states supported on a small subsystem of a few modes, generated by Gaussian measurements on the remaining modes of a globally pure bosonic Gaussian state. We find that beginning from highly entangled, complex global states, such as random Gaussian states and product squeezed states coupled via a deep array of linear optical elements, the induced ensemble attains a universal form, independent of the choice of measurement basis: it is composed of unsqueezed coherent states whose displacements are distributed normally and isotropically, with variance depending on only the particle-number density of the system.

View Article and Find Full Text PDF

We experimentally study cosmological particle production in a two-dimensional Bose-Einstein condensate, whose density excitations map to an analog cosmology. The expansion of spacetime is realized with tunable interactions. The particle spectrum can be understood through an analogy to quantum mechanical scattering, in which the dynamics of the spacetime metric determine the shape of the scattering potential.

View Article and Find Full Text PDF

Quantum-State Texture and Gate Identification.

Phys Rev Lett

December 2024

Universidade Federal de Pernambuco, Departamento de Física, Centro de Ciências Exatas e da Natureza, Recife, Pernambuco 50670-901 Brazil.

We introduce and explore the notion of texture of an arbitrary quantum state, in a selected basis. In the first part of this Letter we develop a resource theory and show that state texture is adequately described by an easily computable monotone, which is also directly measurable. It is shown that textures are useful in the characterization of unknown quantum gates in universal circuit layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!