A novel laboratory simulation system has been developed for the study of the corrosion of uranium metal in soils. Corrosion and transportation of depleted uranium (DU) as the metal undergoes weathering as a buried material within the soil environment. The corrosion of uranium metal in soil was not well understood due to the gas-liquid-solid phase of the soil. This study presents a novel method to investigate the change of uranium species during the process of process of oxidation of metallic uranium in these environments. Compared with other techniques used for the study of environmental corrosion of metals in soils, this method has the advantage of low secondary uranium pollution, no energy consumption, and ease of operation. The simulation system has been used for the following studies: •Simultaneously simulate the corrosion of uranium metal in different soil moisture regimes•Study the influence of biogeochemical factors on the corrosion of uranium metal•Investigate the change of uranium species during oxidation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011081PMC
http://dx.doi.org/10.1016/j.mex.2020.100789DOI Listing

Publication Analysis

Top Keywords

uranium metal
20
corrosion uranium
16
uranium
10
laboratory simulation
8
soil moisture
8
simulation system
8
metal soil
8
change uranium
8
uranium species
8
corrosion
7

Similar Publications

The primary approach to assessing monitored natural attenuation (MNA) is currently based on a conceptual model utilizing the total contaminant concentrations, assuming a single aqueous species. However, many contaminants, such as metals and radionuclide - including iodine, can exist in multiple species that behave chemically differently in the environment and can exist simultaneously. For example, radioiodine often occurs concurrently as three major aqueous species: iodide (I), iodate (IO), and organo-I, which undergo distinct attenuation pathways and exhibit markedly different mobility and geochemical behavior.

View Article and Find Full Text PDF

Chronic Radium-226 Bioaccumulation and Toxicity in the Aquatic Invertebrate Daphnia magna.

Arch Environ Contam Toxicol

January 2025

Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.

Mining operations in Canada, including uranium mining and milling, generate by-products containing radionuclides, including radium-226 (Ra), a long-lived, bioaccumulative calcium (Ca) analog. Despite strict discharge regulations, there is limited evidence to suggest that current thresholds for Ra adequately protect aquatic organisms. Furthermore, Canada lacks a federal water quality guideline for Ra, underscoring the need for protective limits to safeguard aquatic ecosystems.

View Article and Find Full Text PDF

Unconventional superconductivity, where electron pairing does not involve electron-phonon interactions, is often attributed to magnetic correlations in a material. Well known examples include high-T cuprates and uranium-based heavy fermion superconductors. Less explored are unconventional superconductors with strong spin-orbit coupling, where interactions between spin-polarised electrons and external magnetic field can result in multiple superconducting phases and field-induced transitions between them, a rare phenomenon in the superconducting state.

View Article and Find Full Text PDF

Mitigation of depleted uranium-induced mitochondrial damage by ethylmalonic encephalopathy 1 protein via modulation of hydrogen sulfide and glutathione pathways.

Arch Toxicol

December 2024

State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.

Depleted uranium (DU) is a byproduct of uranium enrichment, which can cause heavy-metal toxicity and radiation toxicity as well as serious damage to the kidneys. However, the mechanism of renal injury induced by DU is still unclear. This study aimed to explore the role of ethylmalonic encephalopathy 1 (ETHE1) in DU-induced mitochondrial dysfunction and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Extracellular electron transfer-dependent bioremediation of uranium-contaminated groundwater: Advancements and challenges.

Water Res

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. Electronic address:

Efficient and sustainable remediation of uranium-contaminated groundwater is critical for groundwater safety and the sustainable development of nuclear energy, particularly in the context of global carbon neutrality goals. This review explores the potential of microbial reduction processes that utilize extracellular electron transfer (EET) to convert soluble uranium (U(VI)) into its insoluble form (U(IV)), presenting a promising approach to groundwater remediation. The review first outlines the key processes and factors influencing the effectiveness of dissimilatory metal-reducing bacteria (DMRB), such as Geobacter and Shewanella, during uranium bioremediation and recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!