Acidic soils rapidly retain applied phosphorus fertilizers and consequently present low availability of this nutrient to plants. The use of phosphate-solubilizing microorganisms to help plant phosphorus (P) absorption is a promising sustainable strategy for managing P deficiencies in agricultural soils. Trichoderma strains have been one of the most studied filamentous fungi for improving the production and development of several crop species mainly due to their capability for symbiotic associations and their ability to control soil-borne plant diseases. Thus, this work sought to bioprospect Trichoderma strains from the Amazon rainforest capable of solubilizing/mineralizing soil phosphate and promoting soybean growth. Soybean plants inoculated with selected Trichoderma strains were cultivated in soil under greenhouse conditions and under a gradient of rock phosphate and triple superphosphate. As a result, 19.5% of the isolated Trichoderma strains were able to solubilize phosphate. In addition, those strains produced different organic acids during the solubilization process. Trichoderma spp. strains showed positive responses in the promotion of soybean growth-from 2.1% to 41.1%-as well as in the efficiency of P uptake-up to 141%. These results reveal the potential of Trichoderma spp. from the Amazon biome as promising biofertilizer agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028723 | PMC |
http://dx.doi.org/10.1038/s41598-020-59793-8 | DOI Listing |
Microb Cell Fact
January 2025
School of Life and Health Sciences & College of Tropical Crops, Hainan University, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
Background: Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense is a soil-borne fungal disease.
View Article and Find Full Text PDFACS Med Chem Lett
January 2025
Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India.
A series of novel N-arylsulfonylated C-homoaporphine alkaloids were synthesized under microwave irradiation and evaluated for their antiplatelet and antimicrobial activities. Among the series, compounds , , , , , , , , and demonstrated highly potent (∼3-fold) platelet aggregation inhibitory activity than acetylsalicylic acid (IC = 21.34 μg/mL).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Animal Husbandry, Pasture and Green Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China.
is a destructive pathogen responsible for sunflower sclerotinia rot, resulting in substantial yield and economic losses worldwide. species have demonstrated the capacity to inhibit plant pathogen growth through the production of secondary metabolites. However, there are fewer recent studies focusing on the application of metabolites in inhibiting growth and development and controlling sunflower sclerotinia rot disease.
View Article and Find Full Text PDFFEBS Lett
January 2025
Department of Symbiotic Science of Environment and Natural Resources, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan.
Carbonyl sulfide hydrolase (COSase) is a unique enzyme that exhibits high activity towards carbonyl sulfide (COS) but low carbonic anhydrase (CA) activity, despite belonging to the CA family. COSase was initially identified in a sulfur-oxidizing bacterium and later discovered in the ascomycete Trichoderma harzianum strain THIF08. The COSase from T.
View Article and Find Full Text PDFBMC Biotechnol
January 2025
Faculty of Archaeology, South Valley University, Qena, Egypt.
The increasing demand for sustainable alternatives to conventional antifungal agents has prompted extensive research into the antifungal properties of plant essential oils (EOs). This study investigates the use of EOs mixture (Origanum vulgare, Moringa oleifera, and Cinnamomum verum) for controlling fungal deterioration in wall paintings at the archaeological Youssef Kamal Palace in Nag Hammadi, Egypt. Fungal isolates were collected from deteriorated wall paintings and identified using phenotypic and genotypic analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!