We report a systematic, cellular phenotype-based antimalarial screening of the Medicines for Malaria Venture Pathogen Box collection, which facilitated the identification of specific blockers of late-stage intraerythrocytic development of First, from standard growth inhibition assays, we identified 173 molecules with antimalarial activity (50% effective concentration [EC] ≤ 10 μM), which included 62 additional molecules over previously known antimalarial candidates from the Pathogen Box. We identified 90 molecules with EC of ≤1 μM, which had significant effect on the ring-trophozoite transition, while 9 molecules inhibited the trophozoite-schizont transition and 21 molecules inhibited the schizont-ring transition (with ≥50% parasites failing to proceed to the next stage) at 1 μM. We therefore rescreened all 173 molecules and validated hits in microscopy to prioritize 12 hits as selective blockers of the schizont-ring transition. Seven of these molecules inhibited the calcium ionophore-induced egress of , a related apicomplexan parasite, suggesting that the inhibitors may be acting via a conserved mechanism which could be further exploited for target identification studies. We demonstrate that two molecules, MMV020670 and MMV026356, identified as schizont inhibitors in our screens, induce the fragmentation of DNA in merozoites, thereby impairing their ability to egress and invade. Further mechanistic studies would facilitate the therapeutic exploitation of these molecules as broadly active inhibitors targeting late-stage development and egress of apicomplexan parasites relevant to human health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179631PMC
http://dx.doi.org/10.1128/AAC.01802-19DOI Listing

Publication Analysis

Top Keywords

pathogen box
12
transition molecules
12
molecules inhibited
12
molecules
9
screening medicines
8
medicines malaria
8
malaria venture
8
venture pathogen
8
late-stage development
8
development egress
8

Similar Publications

Cervical cancer continues to disproportionately burden women in sub-Saharan Africa, and is the commonest gynecological cancer in Ghana. The Cervical Cancer Prevention and Training Centre (CCPTC), Battor, Ghana spearheaded the Ghana arm of the mPharma 10,000 Women Initiative (mTTWI) between September 2021 and October 2022. The aim of this study was to examine the outcomes of nationwide concurrent screening using high-risk human papillomavirus (hr-HPV) DNA testing and visual inspection methods, as well as factors associated with the screening outcomes.

View Article and Find Full Text PDF

Helicobacter pylori (H. pylori) is an extremely prevalent human pathogen globally that leads to severe illnesses. Sadly, the worldwide issue of H.

View Article and Find Full Text PDF

DNA-binding affinity and specificity determine the phenotypic diversity in BCL11B-related disorders.

Am J Hum Genet

January 2025

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany. Electronic address:

BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.

View Article and Find Full Text PDF

Introduction: Ebola virus (EBOV) is a highly lethal RNA virus that causes severe hemorrhagic fever in humans and non-human primates. The lack of effective treatment or vaccine for this pathogen poses a serious threat to a global pandemic. Therefore, it is imperative to explore new drugs and therapies to combat this life-threatening infection.

View Article and Find Full Text PDF

The Receptor for Advanced Glycation End Products (RAGE), part of the immunoglobulin superfamily, plays a significant role in various essential functions under both normal and pathological conditions, especially in the progression of Alzheimer's disease (AD). RAGE engages with several damage-associated molecular patterns (DAMPs), including advanced glycation end products (AGEs), beta-amyloid peptide (Aβ), high mobility group box 1 (HMGB1), and S100 calcium-binding proteins. This interaction impairs the brain's ability to clear Aβ, resulting in increased Aβ accumulation, neuronal injury, and mitochondrial dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!