Functional near infrared spectroscopy (fNIRS) is a noninvasive optics-based neuroimaging modality successfully applied to real-life settings. The technology uses light in the near infrared range (650-950nm) to track changes in oxygenated (HbO2) and deoxygenated hemoglobin (Hb) obtained from measured light intensity using light-tissue interaction principles. fNIRS data processing involves artifact removal and hemodynamic signal conversion using modified Beer-Lambert law (MBLL) to obtain Hb and HbO2, reliably. fNIRS signals can get contaminated by various noise sources of physiological and non-physiological origins. Various algorithms have been proposed for the elimination of artifacts from frequency selective filters to blind source separation methods. Hemodynamic signal extraction using raw intensity measurements at multiple wavelengths based on MBLL usually involves apriori knowledge of certain conversion parameters such as molar extinction coefficients ( ε ) and differential path length factor (DPF). Different sets of conversion parameters dependent upon wavelength, chromophores, and age have been reported. Variation in processing algorithms and parameters can cause differences in Hb and HbO2 extraction which can in turn change study outcomes. Using fNIRS, we have previously shown significant increases in oxygenation in the prefrontal cortex from Single-Task-Walking (STW) to Dual-task-Walking (DTW) conditions in older adults due to greater cognitive demands inherent in the latter condition. In the current study, we re-analyzed our data and determined that although using different conversion parameters i.e. ε and age dependent DPF and filter cut-off frequencies at 0.14 and 0.08Hz including those designed to remove confounding effects of Mayer waves had caused some linear increases or decreases on the extracted Hb and HbO2 signals, those effects were minimal in task related comparisons and hence, the overall study outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768789PMC
http://dx.doi.org/10.1109/TNSRE.2020.2970407DOI Listing

Publication Analysis

Top Keywords

conversion parameters
12
fnirs signals
8
older adults
8
hemodynamic signal
8
study outcomes
8
fnirs
5
effects processing
4
processing methods
4
methods fnirs
4
signals assessed
4

Similar Publications

Morphological Features Influence the Drug Loading and Delivery Efficacy of Photoactivatable Gold Nanocarriers for Antitumor Photo/Chemotherapy.

ACS Appl Mater Interfaces

January 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.

Photoactivatable gold nanocarriers are transforming antitumor therapies by leveraging their distinctive physicochemical properties, enabling targeted drug delivery and enhanced therapeutic efficacy in cancer treatment. This study systematically investigates how surface topography and morphology of gold nanocarriers influence drug loading capacity, light-to-heat conversion efficiency, and overall therapeutic performance in photo/chemotherapy. We synthesized four distinct morphologies of gold nanoparticles: porous gold nanocups (PAuNCs), porous gold nanospheres (PAuNSs), solid gold nanocups (SAuNCs), and solid gold nanospheres (SAuNSs).

View Article and Find Full Text PDF

Expanding the concept of ID conversion in TogoID by introducing multi-semantic and label features.

J Biomed Semantics

January 2025

Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Kashiwa, Chiba, Japan.

Background: TogoID ( https://togoid.dbcls.jp/ ) is an identifier (ID) conversion service designed to link IDs across diverse categories of life science databases.

View Article and Find Full Text PDF

Dual functionalization of carboxymethyl cellulose and alginate via Passerini three-component reaction to graft two hydrophobic moieties: Toward modular thin films.

Carbohydr Polym

March 2025

Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Cédex, France. Electronic address:

Passerini reaction was advantageously exploited to hydrophobize carboxymethyl cellulose (CMC) and alginates (ALG) by employing various hydrophobic aldehydes and isocyanides. The Passerini reaction, carried out in ecofriendly conditions, allowed to design never described twofold hydrophobized polysaccharide derivatives via the covalent grafting of two hydrophobic moieties. The modified CMC and ALG products were in-depth characterized to guaranty the success of the modification and to calculate the degrees of substitution (DS).

View Article and Find Full Text PDF

Microbial activity of the inoculum determines the impact of activated carbon, magnetite and zeolite on methane production.

Sci Total Environ

January 2025

CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal. Electronic address:

The conversion of organic matter to methane through anaerobic digestion (AD) process can be enhanced by different materials. However, literature reports show inconsistent results on the effect of materials in different AD systems. In this study, we evaluated the influence of the inoculum's activity on methane production (MP) efficiency in the presence of different materials (activated carbon (AC), magnetite (Mag), and zeolite (Zeo)).

View Article and Find Full Text PDF

Dicarboxylic acids (DCAs), with their deliquescence and hygroscopic nature, can function as cloud condensation nuclei (CCN) and ice nuclei (IN), affecting rainfall patterns. DCA analysis can serve as organic molecular markers for anthropogenic and biogenic sources. Very few studies deal with the optimization of the protocol for qualitative and quantitative analysis of DCAs using gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!