Influence of skin wounds on the intestinal inflammatory response and barrier function: Protective role of dietary Shewanella putrefaciens SpPdp11 administration to gilthead seabream (Sparus aurata L.).

Fish Shellfish Immunol

Fish Innate Immune System Group, Department of Cell Biology and Histology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain. Electronic address:

Published: April 2020

The effects of skin wounds on the intestinal barrier function and the beneficial effects of the dietary administration of Shewanella putrefaciens (known as SpPdp11) in gilthead seabream (Sparus aurata L.) were studied. Two replicates of fish were fed a commercial diet (control, CON) or CON diet enriched with 10 cfu g SpPdp11 (SP diet) for 30 days. After this time, half of the fish were sampled, while the others were injured below the lateral line (wounded fish, W) and fed the same diets for an extra week before sampling (CON + W and SP + W groups). The intestinal histology and gene expression of different genes relevant for the intestinal barrier function were studied. The results showed that injured fish had a disordered enterocyte nucleus disposition, a more intense infiltration of mixed leucocytes and a thicker lamina propria in the intestine compared to the control fish. However, the fish in the SP + W group did not present these pathological symptoms in the intestine. No significant variations in the number of goblet cells were detected among the different experimental groups. Pro-inflammatory cytokines (colony-stimulating factor receptor 1, CSF1R, myeloperoxidase, MPO and interleukin-1β, IL-1β), mucins (intestinal mucin, IMUC and mucin 2, MUC2), and immunoglobulin T heavy chain (IGHT) were up-regulated, while tight junction protein occludin was down-regulated in the intestine from fish of the CON + W group. Similarly, the dietary administration of SpPdp11 markedly depressed the gene expression of pro-inflammatory cytokines, MUC2 and IGHT, but increased the gene expression of anti-inflammatory cytokine transforming growth factor-β1 (TGF-β1) and the tight junction proteins tricellulin and occluding after wounding. In brief, the skin wounds provoked an intestinal inflammatory response that included changes in the mucus layer and tight junction disruptions. Besides this, preventive administration of SpPdp11 alleviated the intestinal dysfunctions caused by skin wounds in gilthead seabream.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2020.02.022DOI Listing

Publication Analysis

Top Keywords

skin wounds
16
barrier function
12
gilthead seabream
12
gene expression
12
tight junction
12
wounds intestinal
8
intestinal inflammatory
8
inflammatory response
8
shewanella putrefaciens
8
putrefaciens sppdp11
8

Similar Publications

X-ray Responsive Antioxidant Drug-Free Hydrogel for Treatment of Radiation Skin Injury.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.

View Article and Find Full Text PDF

Background/aims: Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.

View Article and Find Full Text PDF

Objective: To determine the clinical microbial synergy in skin and soft tissue infections (SSTIs) based on bacterial groups and explore the likelihood ratios of clinical parameters.

Study Design: Descriptive cross-sectional study. Place and Duration of the Study: The study was conducted at the Department of Microbiology, University of Karachi in collaboration with Jinnah Postgraduate Medical Centre, and Jinnah Sindh Medical University, Karachi, Pakistan, from June 2023 to May 2024.

View Article and Find Full Text PDF

Objective: The direction of this study was to detect and analyze the specific mechanism of anti-apoptosis in mesenchymal stem cells (MSCs) cells caused by high expression of BCL2.

Methods: Bioinformatics was completed in Link omics. GO analysis and KEGG analysis were carried out, and the grope tool of Link omics database was used to evaluate PPI information and other core path analysis information.

View Article and Find Full Text PDF

The mango cultivar 'Apple' is commercially important in Kenya but highly susceptible to russeting. Russeting refers to an area of fruit skin where the primary (epidermal) surface has been replaced by a secondary (peridermal) surface. The objective was to establish histologies, gene expressions and chemical compositions of a natural periderm, a wound-induced periderm and of cuticles of an un-russeted skin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!