Fluorescent nanosensor designing via hybrid of carbon dots and post-imprinted polymers for the detection of ovalbumin.

Talanta

School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Cademy of Sciences, Yantai, 264003, China. Electronic address:

Published: May 2020

We reported a facile strategy to assemble a ratiometric nanosensor for the ovalbumin (OVA) fluorescence determination and meanwhile it can be utilized for selective visual identification by naked eyes with fluorescent test papers under 365 nm UV lamp. The nanosensor was prepared through simply mixing blue color carbon dots (CDs) and green color core-shell imprinted polymers. Blue CDs were used directly as the internal reference without participating in the imprinting process and modified molecularly imprinted polymers (MIPs) were synthesized by post-imprinting, using fluorescein isothiocyanate (FITC) as fluorescence enhanced signal. Upon the addition of different concentrations of OVA, the fluorescence intensity of FITC was enhanced, while the fluorescence intensity of CDs was almost unchanged, leading to a detection limit as low as 15.4 nM. Accordingly, the fluorescence color was gradually changed from blue to dark olive green to green with naked eyes observation. Moreover, the ratiometric nanosensor was successfully applied to detect OVA in the human urine samples with satisfactory recoveries attaining of 92.0-104.0% with relative standard deviation (RSD) of 3.3-3.9% and 93.3-101.0% with RSDs of 2.7-3.8% for the spiked chicken egg white samples. This strategy reported here opens a novel pathway for biomacromolecule detection in real applications and can realize the visual observation on fluorescent test papers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2020.120727DOI Listing

Publication Analysis

Top Keywords

carbon dots
8
ratiometric nanosensor
8
ova fluorescence
8
naked eyes
8
fluorescent test
8
test papers
8
imprinted polymers
8
fluorescence intensity
8
fluorescence
5
fluorescent nanosensor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!