This study demonstrates a newly developed PDMS/DVB/PDMS fiber's suitability for the determination of pesticides in soy milk via direct-immersion solid-phase microextraction (SPME) combined with gas chromatography-mass spectrometry, eliminating the need for extensive sample pre-treatment procedures. Fouling accumulation on the coating surface was further minimized by implementing rapid and effective pre- and post-desorption cleaning steps. Under optimum conditions, the fiber was used to perform over 120 extractions while maintaining RSD values of less than 24.5% for 10 extracted pesticides. By comparison, the RSD values ranged from 8.4% to 42.8% over 80 extractions using a commercial PDMS/DVB fiber. The optimized conditions were used to fully validate a quantitative method for the targeted analytes by matrix-matched calibration and isotopically labeled internal standard correction. Significantly, the proposed method was able to achieve limits of quantitation (1-2.5 μg/kg) for the targeted analytes that were below the Maximum Residue Levels mandated for soy-based products. Accuracy, intra- and inter-day repeatability were also satisfactory. The proposed PDMS/DVB/PDMS fiber dramatically improved repeatability and suitability for direct-immersion SPME in soy milk, and represents a good alternative to other extraction methods for high-throughput quantitative analysis of pesticide residues in soy-based products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2020.120746DOI Listing

Publication Analysis

Top Keywords

soy milk
12
direct-immersion spme
8
spme soy
8
rsd values
8
targeted analytes
8
soy-based products
8
milk pesticide
4
pesticide analysis
4
analysis trace
4
trace levels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!