Study of key RNA metabolism proteins in .

RNA Biol

Normandie Univ, UNICAEN, Unité De Recherche Risques Microbiens U2RM , Caen, France.

Published: June 2020

The control of mRNA turnover is essential in bacteria to allow rapid adaptation, especially in opportunistic pathogen like . This mechanism involves RNase and DEAD-box helicases that are key elements in RNA processing and their associations form the degradosome with accessory proteins. In this study, we investigated the function of four RNases (J1, J2, Y and III) and three DEAD-box helicases (CshA, CshB, CshC) present in most Enterococci. The interactions of all these RNA metabolism actors were investigated , and the results are in accordance with a degradosome structure close to the one of . At the physiological level, we showed that RNase J1 is essential, whereas RNases J2 and III have a role in cold, oxidative and bile salts stress response, and RNase Y in general fitness. Furthermore, RNases J2, Y and III mutants are affected in virulence in the infection model. Concerning DEAD-box helicases, all of them are involved in cold shock response. Since the Δ mutant was the most stress impacted strain, we studied this DEAD-box helicase CshA in more detail. This showed that CshA autoregulates its own expression by binding to its mRNA 5'Unstranslated Region. Interestingly, CshC is also involved in the expression control of CshA by a hitherto unprecedented mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549701PMC
http://dx.doi.org/10.1080/15476286.2020.1728103DOI Listing

Publication Analysis

Top Keywords

dead-box helicases
12
rnases iii
12
rna metabolism
8
study key
4
key rna
4
metabolism proteins
4
proteins control
4
control mrna
4
mrna turnover
4
turnover essential
4

Similar Publications

In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance.

View Article and Find Full Text PDF

scTRIM44 Positively Regulated Siniperca Chuatsi Rhabdovirus Through RIG-I- and MDA5-Mediated Interferon Signaling.

Viruses

December 2024

Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.

Tripartite Motif-Containing 44 (TRIM44) is responsible for cancers, neurodegenerative diseases, and viral infections. However, the role of TRIM44 (scTRIM44) during viral infection remains unclear. In the present study, we analyzed the molecular characteristics of scTRIM44 and its role in infectious spleen and kidney necrosis virus (ISKNV), largemouth bass virus (LMBV), and Siniperca chuatsi rhabdovirus (SCRV) infection.

View Article and Find Full Text PDF

and its major compound dieckol, both natural marine products, possess antioxidant, anti-inflammatory, and metabolic-regulating effects. Zika virus (ZIKV), an arbovirus from the family, is transmitted by mosquitoes and causes serious illnesses in humans. This study aimed to evaluate the anti-ZIKV potential of and dieckol.

View Article and Find Full Text PDF

DDX21, a member of the DEAD-box RNA helicase family, plays a pivotal role in various aspects of RNA metabolism, including ribosomal RNA (rRNA) processing, transcription, and translation. Its diverse functions in cancer progression and viral infections have attracted considerable attention. DDX21 exerts a pivotal function through ribosomal DNA (rDNA) transcription and rRNA processing.

View Article and Find Full Text PDF

DEAD/H Box 5 (DDX5) Augments E2F1-Induced Cell Death Independent of the Tumor Suppressor p53.

Int J Mol Sci

December 2024

Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan.

In almost all cancers, the p53 pathway is disabled and cancer cells survive. Hence, it is crucially important to induce cell death independent of p53 in the treatment of cancers. The transcription factor E2F1 is controlled by binding of the tumor suppressor pRB, and induces apoptosis by activating the gene, an upstream activator of p53, when deregulated from pRB by loss of pRB function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!