A New Edible Film to Produce In Vitro Meat.

Foods

Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.

Published: February 2020

In vitro meat is a novel concept of food science and biotechnology. Methods to produce in vitro meat employ muscle cells cultivated on a scaffold in a serum-free medium using a bioreactor. The microstructure of the scaffold is a key factor, because muscle cells must be oriented to generate parallel alignments of fibers. This work aimed to develop a new scaffold (microstructured film) to grow muscle fibers. The microstructured edible films were made using micromolding technology. A micromold was tailor-made using a laser cutting machine to obtain parallel fibers with a diameter in the range of 70-90 µm. Edible films were made by means of solvent casting using non-mammalian biopolymers. Myoblasts were cultured on flat and microstructured films at three cell densities. Cells on the microstructured films grew with a muscle fiber morphology, but in the case of using the flat film, they only produced unorganized cell proliferation. Myogenic markers were assessed using quantitative polymerase chain reaction. After 14 days, the expression of desmin, myogenin, and myosin heavy chain were significantly higher in microstructured films compared to the flat films. The formation of fiber morphology and the high expression of myogenic markers indicated that a microstructured edible film can be used for the production of in vitro meat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073543PMC
http://dx.doi.org/10.3390/foods9020185DOI Listing

Publication Analysis

Top Keywords

vitro meat
16
microstructured films
12
edible film
8
produce vitro
8
muscle cells
8
microstructured edible
8
edible films
8
fiber morphology
8
myogenic markers
8
microstructured
6

Similar Publications

Morphology and functionality in biomimetic cultured meat produced from various cellular origins.

Biomater Adv

January 2025

Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.

Alternative meat production technologies offer the potential to alleviate many of the ethical, environmental, and public health concerns associated with conventional meat production. Cultured meat produced using cell culture technology promises to become a viable alternative to animal-raised meat for the future of the food industry. The process of cultured meat production relies on cell sources harvested from livestock such as bovine, swine, and chicken.

View Article and Find Full Text PDF

Cultured meat (CM) is derived from the in vitro myogenesis of muscle satellite (stem) cells (MSCs) and offers a promising alternative protein source. However, the development of a cost-effective media formulation that promotes cell growth has yet to be achieved. In this study, laxogenin (LAX) and 5-alpha-hydroxy-laxogenin (5HLAX) were computationally screened against myostatin (MSTN), a negative regulator of muscle mass, because of their antioxidant properties and dual roles as MSTN inhibitors and enhancers of myogenesis regulatory factors.

View Article and Find Full Text PDF

Analysis of bioactive substances in mutton and their effects on the quality of minced mutton.

Food Res Int

January 2025

Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.

The aim of this study was to systematically analyze the differences in bioactive compounds in Ningxia Tan, Oula, and Bahan crossbred mutton, and to examine their effects on minced mutton quality. Initially, characteristic bioactive compounds in mutton were analyzed using principal component analysis. Further investigation assessed the effects of varying concentrations of glycyrrhizin flavonoids (0, 0.

View Article and Find Full Text PDF

Recombinant Porcine FGF1 Promotes Muscle Stem Cell Proliferation and Mitochondrial Function for Cultured Meat Production.

J Agric Food Chem

January 2025

Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.

Cultured meat is an emerging technology with the potential to meet future protein demands while addressing the challenges associated with traditional livestock farming. The production of cultured meat requires efficient, animal component-free systems for muscle stem cell (MuSC) expansion. Fibroblast growth factor 1 (FGF1) is a critical growth factor that regulates the MuSC function.

View Article and Find Full Text PDF

The objective of this study was to determine the effects of growth-related myopathies, i.e., normal, wooden breast (WB), white striping (WS), and the combined lesions of WS and WB (WS + WB), on the molecular response of Caco-2 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!