Mitochondria and Lysosomes Participate in Vip3Aa-Induced Sf9 Cell Apoptosis.

Toxins (Basel)

Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.

Published: February 2020

Vip3Aa, a soluble protein produced by certain strains, is capable of inducing apoptosis in Sf9 cells. However, the apoptosis mechanism triggered by Vip3Aa is unclear. In this study, we found that Vip3Aa induces mitochondrial dysfunction, as evidenced by signs of collapse of mitochondrial membrane potential, accumulation of reactive oxygen species, release of cytochrome c, and caspase-9 and -3 activation. Meanwhile, our results indicated that Vip3Aa reduces the ability of lysosomes in Sf9 cells to retain acridine orange. Moreover, pretreatment with Z-Phe-Tyr-CHO (a cathepsin L inhibitor) or pepstatin (a cathepsin D inhibitor) increased Sf9 cell viability, reduced cytochrome c release, and decreased caspase-9 and -3 activity. In conclusion, our findings suggested that Vip3Aa promotes Sf9 cell apoptosis by mitochondrial dysfunction, and lysosomes also play a vital role in the action of Vip3Aa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076775PMC
http://dx.doi.org/10.3390/toxins12020116DOI Listing

Publication Analysis

Top Keywords

sf9 cell
12
cell apoptosis
8
sf9 cells
8
mitochondrial dysfunction
8
cathepsin inhibitor
8
vip3aa
6
sf9
5
mitochondria lysosomes
4
lysosomes participate
4
participate vip3aa-induced
4

Similar Publications

Scorpion insect neurotoxin LqhIT2 is a promising oral biopesticide: high-level preparation in Pichia pastoris and bioactivity assays.

Pest Manag Sci

December 2024

Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, China.

Background: Discovering insecticidal proteins with high activity and strict insect specificity and applying them to the biological control of insect pests is of great significance. Oral LqhIT2 has insecticidal activity, which most other insecticidal neurotoxin proteins do not have, but the large-scale preparation of the toxin is difficult and one of the obstacles to determining its anti-insect potential for biological control.

Results: In this study, the expression level of recombinant LqhIT2 (rLqhIT2) in Pichia pastoris was as high as 1.

View Article and Find Full Text PDF

Two secretory T2 RNases from a fungal pathogen target distinct insect cell transmembrane proteins to cause cytotoxicity.

Insect Sci

December 2024

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China.

Fungal pathogens produce secretory ribonuclease (RNase) T2 proteins during infection, which contribute to fungal virulence via their enzyme functions in degradation of host cell RNA. However, the details of those proteins entering the host cells are unclear. Our previous study demonstrated that the two secretory RNase T2 members, BbRNT2 and BbTrv, produced by the insect fungal pathogen Beauveria bassiana, caused cytotoxic damage to insect cells and contributed to fungal virulence.

View Article and Find Full Text PDF

Insect gustatory receptors play a critical role in modulating feeding behaviors by detecting external nutritional cues through complex biochemical pathways. Bitter taste receptors are essential for insects to identify and avoid toxins. However, the detailed molecular and cellular mechanisms by which these receptors influence insect feeding behavior remain poorly understood.

View Article and Find Full Text PDF

Expression, Purification, and In Vitro Analysis of Myosin.

Methods Mol Biol

December 2024

Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.

To understand the mechanics and kinetic properties of cytoskeletal molecular motors such as myosin, typically the motor of interest needs to be expressed and purified and then analyzed using a range of in vitro-based assays. In this chapter, we describe how to express and purify myosin using the insect cell system, how to characterize the purified protein by mass photometry and negative-stain EM to assess its quality, and how to perform in vitro assays in which fluorescently labeled myosin walks along actin tracks, including a brief description of adapting these assays for MINFLUX imaging.

View Article and Find Full Text PDF

Efflux and uptake transport and gut microbial reactivation of raloxifene glucuronides.

Basic Clin Pharmacol Toxicol

January 2025

Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.

Raloxifene has low bioavailability due to extensive glucuronidation in the intestine and the liver, and its pharmacokinetics is associated with high intra- and interindividual variability. Some of this variability could be explained by the enterohepatic recycling of raloxifene, which is driven by transporter-mediated uptake and efflux and gut microbial deglucuronidation of raloxifene glucuronides. These individual processes involved in raloxifene disposition, however, have not been characterized in full detail.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!