Widespread contamination of agricultural soil with toxic metals such as cadmium (Cd) is a major threat to crop production and human health. Metallochaperones are a unique class of proteins that play pivotal roles in detoxifying metallic ions inside cells. In this study, we investigated the biological function of an uncharacterized metallochaperone termed OsHIPP29 in rice plants and showed that OsHIPP29 resides in the plasma membrane and nucleus and detoxifies excess Cd and Zn. OsHIPP29 was primarily expressed in shoots during the vegetative stage and in leaf sheath and spikelet at the flowering stage. It can be differentially induced by excess Cd, Zn, Cu, Fe and Mn. To identify the function of OsHIPP29 in mediating rice response to Cd stress, we examined a pair of OsHIPP29 mutants, RNAi lines and transgenic rice overexpressing OsHIPP29 (OX) under Cd stress. Both mutant and RNAi lines are sensitive to Cd in growth as reflected in decreased plant height and dry biomass. In contrast, the OX lines showed better growth under Cd exposure. Consistent with the phenotype, the OX lines accumulated less Cd in both root and shoot tissues, whereas OsHIPP29 knockout led to higher accumulation of Cd. These results point out that expression of OsHIPP29 is able to contribute to Cd detoxification by reducing Cd accumulation in rice plants. Our work highlights the significance of OsHIPP29-mediated reduced Cd in rice plants, with important implications for further developing genotypes that will minimize Cd accumulation in rice and environmental risks to human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.125958 | DOI Listing |
Mol Plant
January 2025
National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, China; State Key Laboratory of Crop Gene Resources and Breeding/ Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Yazhouwan National Laboratory, Sanya 572000, China. Electronic address:
As drastic climatic changes significantly impact global agriculture, the importance of conserving and utilizing wild germplasm has gained prominance. In this context, the conservation and sustainable utilization of wild rice germplasm resources have become a high priority. Although efforts to conserve and sustainably utilize wild rice germplasm are underway globally, they are fragmented and require international cooperation to advance climate-resilient rice breeding and ensure future food securiety.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Research Institute of Big Data Science and Industry, Shanxi University, Taiyuan, Shanxi, 030006, China.
The Streptococcus canis Cas9 protein (ScCas9) recognizes the NNG protospacer adjacent motif (PAM), offering a wider range of targets than that offered by the commonly used S. pyogenes Cas9 protein (SpCas9). However, both ScCas9 and its evolved Sc++ variant still exhibit low genome editing efficiency in plants, particularly at the less preferred NTG and NCG PAM targets.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China. Electronic address:
The in-situ-produced dextrans (DXs) could effectively enhance the viscosity of rice protein (RP) yogurt, but the reason for this improvement has not been elucidated. This study aims to reveal the mechanism underlying the viscosity improvement of RP yogurt by the presence of in-situ DXs. DXs synthesized in RP yogurts under different optimum conditions were purified and fully characterized.
View Article and Find Full Text PDFDev Cell
December 2024
State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China. Electronic address:
The exchange of molecular information across kingdoms is crucial for the survival of both plants and their pathogens. Recent research has identified that plants transfer their small RNAs and microRNAs into fungal pathogens to suppress infection. However, whether and how plants send defense proteins into pathogens remains unknown.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China. Electronic address:
The plant UDP-glycosyltransferases (UGTs) regulate several metabolic processes during root growth and development by conjugating sugar moieties to various small molecules. RsUGT71B5 is a novel UDP-glycosyltransferase in Raphanus sativus L., but its biological function is not well established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!