We numerically analyze a delay differential equation model of a short-cavity semiconductor laser with an intracavity frequency-swept filter and reveal a complex bifurcation structure responsible for the asymmetry of the output characteristics of this laser. We show that depending on the direction of the frequency sweep of a narrow-band filter, there exist two bursting cycles determined by different parts of a continuous-wave solutions branch.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.101.012212 | DOI Listing |
Comput Methods Programs Biomed
January 2025
Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan.
Background And Objective: Coughing events are eruptive sources of virus-laden droplets/droplet nuclei. These increase the risk of infection in susceptible individuals during airborne transmission. The oral cavity functions as an exit route for exhaled droplets.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
Qualitative analysis in mathematical modeling has become an important research area within the broad domain of nonlinear sciences. In the realm of qualitative analysis, the bifurcation method is one of the significant approaches for studying the structure of orbits in nonlinear dynamical systems. To apply the bifurcation method to the (2 + 1)-dimensional double-chain Deoxyribonucleic Acid system with beta derivative, the bifurcations of phase portraits and chaotic behaviors, combined with sensitivity and multi-stability analysis of this system, are examined.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Wagner-Jauregg Weg 15, 4020 Linz and Altenbergerstrasse 69, Linz, 4040, Austria.
Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Electrical and Computer Engineering Department, Concordia University, Montreal, Canada.
Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, 1 Alikhanov St., Karaganda 100008, Kazakhstan.
The synthetic availability and wide range of biological activity of hydrazides and hydrazones make them attractive subjects for investigation. In this study, we focused on synthesis of 2-methyl-5-nitro-6-phenylnicotinohydrazide-based hydrazones derived from the corresponding substituted aldehydes. The structure of the obtained compounds was studied using NMR spectroscopy and DFT calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!