A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. III. Case of self-interacting modes n-n. | LitMetric

This paper is the continuation of work done in our previous papers [A. A. Doinikov et al., Phys. Rev. E 100, 033104 (2019)2470-004510.1103/PhysRevE.100.033104; Phys. Rev. E 100, 033105 (2019)].2470-004510.1103/PhysRevE.100.033105 The overall aim of the study is to develop a theory for modeling the velocity field of acoustic microstreaming produced by nonspherical oscillations of an acoustically driven gas bubble. In our previous papers, general equations have been derived to describe the velocity field of acoustic microstreaming produced by modes m and n of bubble oscillations. After solving these general equations for some particular cases of modal interactions (cases 0-n, 1-1, and 1-m), in this paper the general equations are solved analytically for the case that acoustic microstreaming results from the self-interaction of an arbitrary surface mode n≥1. Solutions are expressed in terms of complex mode amplitudes, meaning that the mode amplitudes are assumed to be known and serve as input data for the calculation of the velocity field of acoustic microstreaming. No restrictions are imposed on the ratio of the bubble radius to the viscous penetration depth. The self-interaction results in specific streaming patterns: a large-scale cross pattern and small recirculation zones in the vicinity of the bubble interface. Particularly the spatial organization of the recirculation zones is unique for a given surface mode and therefore appears as a signature of the n-n interaction. Experimental streaming patterns related to this interaction are obtained and good agreement is observed with the theoretical model.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.101.013111DOI Listing

Publication Analysis

Top Keywords

acoustic microstreaming
20
microstreaming produced
12
velocity field
12
field acoustic
12
general equations
12
produced nonspherical
8
nonspherical oscillations
8
gas bubble
8
previous papers
8
phys rev
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!