Singular solitons.

Phys Rev E

Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 69978, Israel.

Published: January 2020

We demonstrate that the commonly known concept which treats solitons as nonsingular solutions produced by the interplay of nonlinear self-attraction and linear dispersion may be extended to include modes with a relatively weak singularity at the central point, which keeps their integral norm convergent. Such states are generated by self-repulsion, which should be strong enough, represented by septimal, quintic, and usual cubic terms in the framework of the one-, two-, and three-dimensional (1D, 2D, and 3D) nonlinear Schrödinger equations (NLSEs), respectively. Although such solutions seem counterintuitive, we demonstrate that they admit a straightforward interpretation as a result of screening of an additionally introduced attractive δ-functional potential by the defocusing nonlinearity. The strength ("bare charge") of the attractive potential is infinite in 1D, finite in 2D, and vanishingly small in 3D. Analytical asymptotics of the singular solitons at small and large distances are found, entire shapes of the solitons being produced in a numerical form. Complete stability of the singular modes is accurately predicted by the anti-Vakhitov-Kolokolov criterion (under the assumption that it applies to the model), as verified by means of numerical methods. In 2D, the NLSE with a quintic self-focusing term admits singular-soliton solutions with intrinsic vorticity too, but they are fully unstable. We also mention that dissipative singular solitons can be produced by the model with a complex coefficient in front of the nonlinear term.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.101.012211DOI Listing

Publication Analysis

Top Keywords

singular solitons
12
solitons produced
8
singular
4
solitons demonstrate
4
demonstrate commonly
4
commonly concept
4
concept treats
4
solitons
4
treats solitons
4
solitons nonsingular
4

Similar Publications

In this study, the -model expansion method is showed to be useful for finding solitary wave solutions to the Klein-Gordon (KG) equation. We develop a variety of solutions, including Jacobi elliptic functions, hyperbolic forms, and trigonometric forms, so greatly enhancing the range of exact solutions attainable. The 2D, 3D, and contour plots clearly show different types of solitary waves, like bright, dark, singular, and periodic solitons.

View Article and Find Full Text PDF

This research used a modified and extended auxiliary mapping method to examine the optical soliton solutions of the truncated time M-fractional paraxial wave equation. We employed the truncated time M-fractional derivative to eliminate the fractional order in the governing model. The few optical wave examples of the paraxial wave condition can assume an insignificant part in depicting the elements of optical soliton arrangements in optics and photonics for the investigation of different actual cycles, including the engendering of light through optical frameworks like focal points, mirrors, and fiber optics.

View Article and Find Full Text PDF

In light of the ponderomotive force, this article focuses on establishing the exact wave structures of the ion sound system. It is the result of non-linear force and affects a charged particle oscillating in an inhomogeneous electromagnetic field. By using the Riemann-Liouville operator, -operator, and Atangana-Baleanu fractional analysis, the examined equation-which consists of the normalized electric field of the Langmuir oscillation and normalized density perturbation-is thoroughly examined.

View Article and Find Full Text PDF

This study explores the Ivancevic Option Pricing Model, a nonlinear wave-based alternative to the Black-Scholes model, using adaptive nonlinear Schrödingerr equations to describe the option-pricing wave function influenced by stock price and time. Our focus is on a comprehensive analysis of this equation from multiple perspectives, including the study of soliton dynamics, chaotic patterns, wave structures, Poincaré maps, bifurcation diagrams, multistability, Lyapunov exponents, and an in-depth evaluation of the model's sensitivity. To begin, a wave transformation is applied to convert the partial differential equation into an ordinary differential equation, from which soliton solutions are derived using the [Formula: see text] method.

View Article and Find Full Text PDF

Solitary wave solutions to the nonlinear evolution equations have recently attracted widespread interest in engineering and physical sciences. In this work, we investigate the fractional generalised nonlinear Pochhammer-Chree equation under the power-law of nonlinearity with order m. This equation is used to describe longitudinal deformation wave propagation in an elastic rod.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!