Thermadapt shape memory polymers (SMPs), utilizing a variety of dynamic covalent bond exchange mechanisms, have been extensively studied in recent years but it is still challenging to address several constraints in terms of limited accuracy and complexity for constructing 3D shape memory structures. Here, an effective and facile preparation of thermadapt SMPs based on elemental sulfur-derived poly(phenylene polysulfide) networks (PSNs) is presented. These SMPs possess intrinsic near-infrared (NIR)-induced photothermal conversion properties for spatiotemporal control of their plasticity and elasticity. The NIR-controllable plasticity and elasticity of the PSNs enable versatile shape manipulation of 3D multi-shape memory structures, including building block assembly, reconfiguration, shape fixing/recovery, and repair.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202000013DOI Listing

Publication Analysis

Top Keywords

plasticity elasticity
12
memory structures
12
multi-shape memory
8
elemental sulfur-derived
8
polysulfide networks
8
shape memory
8
spatiotemporally controlled
4
controlled plasticity
4
elasticity multi-shape
4
memory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!