Albuminuria is frequently associated with proximal tubule (PT) cytotoxicity that can feed back to cause glomerular damage and exacerbate kidney disease. PT cells express megalin and cubilin receptors that bind to and internalize albumin over a broad concentration range. How the exposure to high concentrations of albumin leads to PT cytotoxicity remains unclear. Fatty acids and other ligands bound to albumin are known to trigger production of reactive oxygen species (ROS) that impair PT function. Alternatively or in addition, uptake of high concentrations of albumin may overload the endocytic pathway and elicit downstream responses. Here, we used a well-differentiated PT cell culture model with high endocytic capacity to dissect the effects of albumin versus its ligands on endocytic uptake and degradation of albumin, production of ROS, and cell viability. Cellular responses differed dramatically, depending on the preparation of albumin tested. Knockdown of megalin or cubilin failed to prevent ROS production mediated by albumin ligands, suggesting that receptor-mediated internalization of albumin was not necessary to trigger cellular responses to albumin ligands. Moreover, albumin induced cytotoxic responses when added to the basolateral surface of PT cells. Whereas overnight incubation with high concentrations of fatty acid-free albumin had no overt effects on cell function or viability, lysosomal degradation kinetics were slowed upon longer exposure, consistent with overload of the PT endocytic/degradative pathway. Together, the results of our study demonstrate that the PT responds independently to albumin and to its ligands and suggest that the consequences of albumin overload in vivo may be dependent on metabolic state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099508PMC
http://dx.doi.org/10.1152/ajprenal.00490.2019DOI Listing

Publication Analysis

Top Keywords

albumin ligands
16
albumin
15
high concentrations
12
proximal tubule
8
megalin cubilin
8
concentrations albumin
8
albumin trigger
8
albumin overload
8
cellular responses
8
ligands
6

Similar Publications

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

The aim of this work was to explore the biomarkers associated with epithelial to mesenchymal transition (EMT) and mineralization processes as new prognostic factors across different breast cancer phenotypes. To this end, 133 breast biopsies, including benign and malignant lesions, with or without microcalcifications, were retrospectively collected. Immunohistochemical analysis was performed to evaluate the expression of vimentin, BMP-2, BMP-4, RANKL, Runx2, OPN, PTX3, and SDF-1, while Kaplan-Meier plots were used to assess their prognostic impact on overall survival in a dataset of 2976 breast cancer patients.

View Article and Find Full Text PDF

Interaction of normelinonine F and related N-methyl-β-carbolines derivatives with bovine serum albumin. Spectroscopic profiles, multivariate analysis and theoretical calculations.

Int J Biol Macromol

January 2025

Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164, B7130IWA Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina. Electronic address:

β-carbolines (βCs) represent a large family of bioactive alkaloids, including norharmane and normelinonine F, known for their diverse pharmacological activities. The effects of these alkaloids may depend, among other factors, on their delivery, accumulation in different subcellular compartments, and interactions with biomacromolecules such as serum albumins. In this study, we investigated the pH dependence of the interactions between bovine serum albumin (BSA) and four βCs (norharmane, normelinonine F, and their corresponding N(9)-methyl derivatives) using UV-vis and fluorescence spectroscopy, combined with multivariate analysis and molecular docking.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitor (ICI) therapy has prolonged the survival of a proportion of patients with advanced non-small cell lung cancer (NSCLC). Histological quantification of programmed cell death-ligand 1 (PD-L1) in tumors is a widely adopted marker for predicting the efficacy of ICI treatment. However, its use in patients with malignant pleural effusion (MPE) is occasionally challenging because of the difficulty of tissue sampling.

View Article and Find Full Text PDF

Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!