A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Macroporous Hydrogel Scaffolds with Tunable Physicochemical Properties for Tissue Engineering Constructed Using Renewable Polysaccharides. | LitMetric

Macroporous Hydrogel Scaffolds with Tunable Physicochemical Properties for Tissue Engineering Constructed Using Renewable Polysaccharides.

ACS Appl Mater Interfaces

State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Xueyuan West Road, Lucheng District, Wenzhou 325027, China.

Published: March 2020

AI Article Synopsis

  • Polysaccharides are gaining interest for creating hydrogel devices in biomedicine, but their mechanical properties limit their use in preclinical settings.
  • This study developed a macroporous hydrogel made from salecan and κ-carrageenan using an eco-friendly method that avoids toxic chemicals, allowing for adjustable properties based on polysaccharide concentrations.
  • The resulting hydrogel supports mouse fibroblast cell functions like adhesion and growth, showing good biocompatibility in vivo, offering a promising approach for tissue engineering applications.

Article Abstract

Polysaccharides have recently attracted increasing attention in the construction of hydrogel devices for biomedical applications. However, polysaccharide-based hydrogels are not suitable for most preclinical applications because of their limited mechanical properties and poor tunability. In this study, we employed a simple and eco-friendly approach to producing a macroporous polysaccharide hydrogel composed of salecan and κ-carrageenan without the use of toxic chemicals. We evaluated the physicochemical properties of the obtained salecan/κ-carrageenan hydrogel and found that its viscoelasticity, morphology, swelling, and thermal stability could be simply controlled by changing the polysaccharide dose in the pre-gel solution. The co-incubation of the fabricated hydrogel with mouse fibroblast cells demonstrated that the hydrogel can support cell adhesion, migration, and growth. Moreover, the hydrogel exhibited good biocompatibility in vivo. Overall, the findings provide a new strategy for the fabrication and optimization of polysaccharide-based hydrogel scaffolds for application in tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b20794DOI Listing

Publication Analysis

Top Keywords

hydrogel scaffolds
8
physicochemical properties
8
tissue engineering
8
hydrogel
7
macroporous hydrogel
4
scaffolds tunable
4
tunable physicochemical
4
properties tissue
4
engineering constructed
4
constructed renewable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: