Spot-scanning particle therapy possesses advantages, such as high conformity to the target and efficient energy utilization compared with those of the passive scattering irradiation technique. However, this irradiation technique is sensitive to target motion. In the current clinical situation, some motion management techniques, such as respiratory-gated irradiation, which uses an external or internal surrogate, have been clinically applied. In surrogate-based gating, the size of the gating window is fixed during the treatment in the current treatment system. In this study, we propose a dynamic gating window technique, which optimizes the size of gating window for each spot by considering a possible dosimetric error. The effectiveness of the dynamic gating window technique was evaluated by simulating irradiation using a moving target in a water phantom. In dosimetric characteristics comparison, the dynamic gating window technique exhibited better performance in all evaluation volumes with different effective depths compared with that of the fixed gate approach. The variation of dosimetric characteristics according to the target depth was small in dynamic gate compared to fixed gate. These results suggest that the dynamic gating window technique can maintain an acceptable dose distribution regardless of the target depth. The overall gating efficiency of the dynamic gate was approximately equal or greater than that of the fixed gating window. In dynamic gate, as the target depth becomes shallower, the gating efficiency will be reduced, although dosimetric characteristics will be maintained regardless of the target depth. The results of this study suggest that the proposed gating technique may potentially improve the dose distribution. However, additional evaluations should be undertaken in the future to determine clinical applicability by assuming the specifications of the treatment system and clinical situation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170289 | PMC |
http://dx.doi.org/10.1002/acm2.12832 | DOI Listing |
J Gen Physiol
March 2025
Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany.
Voltage-gated sodium channels (VGSCs) in the peripheral nervous system shape action potentials (APs) and thereby support the detection of sensory stimuli. Most of the nine mammalian VGSC subtypes are expressed in nociceptors, but predominantly, three are linked to several human pain syndromes: while Nav1.7 is suggested to be a (sub-)threshold channel, Nav1.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
UCL Institute of Ophthalmology, University College London, London, United Kingdom.
Purpose: The purpose of this study was to analyze the retinal sensitivity under photopic, mesopic, and scotopic conditions in a cohort of patients affected with KCNV2-associated retinopathy.
Methods: Cross-sectional evaluation of molecularly confirmed individuals was conducted. Data were obtained prospectively.
Angew Chem Int Ed Engl
January 2025
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China.
Ion/electron-coupling logic operation is recognized as the most promising approach to achieving in-depth brain-inspired computing, but the lack of high-performance ion/electron-coupling devices with high operating frequencies much restricts the fast development of this field. Accordingly, we herein report an orthorhombic niobium pentoxide (T-NbO) based lithium-ion capacitor diode (CAPode) that possesses thoroughly improved performances to achieve multifrequency ion/electron-coupling logic operations. Specifically, benefiting from the unique crystal structure and fast ion-transport topology of T-NbO, the constructed CAPode exhibits a high response frequency of up to 122 Hz, over three orders of magnitude higher than those of the state-of-the-art CAPodes.
View Article and Find Full Text PDFMAGMA
January 2025
Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
Objective: To establish an arterial spin labeling (ASL) protocol for rat livers that improves data reliability and reproducibility for perfusion quantification.
Methods: This study used respiratory-gated, single-slice, FAIR-based ASL imaging with multiple inversion times (TI) in rat livers. Quality assurance measures included: (1) introduction of mechanical ventilation to ensure consistent respiratory cycles by controlling the respiratory rate (45 bpm), tidal volume (10 ml/kg), and inspiration: expiration ratio (I:E ratio, 1:2), (2) optimization of the trigger window for consistent trigger points, and (3) use of fit residual map and coefficient of variance as metrics to assess data quality.
Sci Rep
January 2025
School of Mines, China University of Mining and Technology, Xuzhou, China.
In coal mining operations, the stable operation of hydraulic supports is crucial for ensuring mine safety. However, the nonlinear, non-stationary characteristics and noise interference in hydraulic support pressure data pose significant challenges for anomaly detection and fault diagnosis. This study proposes an anomaly detection and failure identification method based on Gated Recurrent Unit Autoencoder (GRU-AE), aimed at achieving anomaly detection in hydraulic support pressure data and equipment failure early warning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!